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Noatikl Music Engine (NME) 3

Generative MIDI Music

The Intermorphic Noatikl (MIDI) Music Engine (NME) is a generative music engine and is the evolution of the
SSEYO Koan Generative Music Engine (SKME).

The NME utilises a range of generative / aleatoric / stochastic / algorithmic music techniques and parameters and
creates MIDI notes and MIDI controller events through the interaction of 4 different kinds of NME Objects: Voice
(with 6 Voice Types), Rule (Scale, Harmony, Rhythm & Next Note), Piece and File. There can be multiple instances
of the first two objects in a "piece" and there are a large number of Voice parameters to affect and direct the
composition.

Apps that include it

 Noatikl 3 - See Noatikl Web Guide
 Mixtikl 7 - See Mixtikl Web Guide
 Wotja 3 - See Wotja Web Guide
 Tiklbox - See Tiklbox Web Guide

The NME is also a core component in Intermorphic Tikltech.

Sound Generation

The NME MIDI data can (as app available or permitted) be used to drive external MIDI software or hardware synths,
FX units and samplers or can be played through the Intermorphic Partikl Sound Engine for truly portable generative
music.

Next Steps

Fundamental to understanding how the NME works is understanding two types of Objects: Voice and Rule. We
cover these right at the start as once you get your head around them, you are on your way! Before we do that,
though, we first need to introduce the "Generator Network", which defines how everything is hooked up together.

Generator Network

The generator network defines how all the generators/voice objects in the piece are associated with MIDI
channels,which in turn can be associated with PSE Sound Networks and FX Networks. It also defines how these
generators/voices are linked to each other (e.g. Following voices [below], where one voice follows the output of
another). In it you can:

Drag Generator/Voice to MIDI Channel (or vice-versa) for

https://intermorphic.com/pse/3
https://intermorphic.com/pse/3/index.html
https://intermorphic.com/about/index.html#tikltech
https://intermorphic.com/tiklbox/guide
https://intermorphic.com/tiklbox/index.html
https://intermorphic.com/archive/wotja/3/guide
https://intermorphic.com/archive/wotja/3
https://intermorphic.com/mixtikl/guide/index.html
https://intermorphic.com/mixtikl/index.html
https://intermorphic.com/noatikl/guide/index.html
https://intermorphic.com/noatikl/index.html
https://intermorphic.com/sseyo/koan/index.html
https://en.wikipedia.org/wiki/MIDI
https://intermorphic.com/noatikl/guide
https://intermorphic.com/noatikl/#faq
http://forum.intermorphic.com/viewforum.php?f=38
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easy MIDI channel mapping
Drag Generator/Voice to Generator/Voice for easy
Follow/Repeat voice networks
Tap Synth/FX buttons to display the built-in PSE Synth/FX
Network Editors
Drag Generators/Voices around for easy re-ordering
(Desktop version)

If you drag from a Voice box to a MIDI channel box that
will tell the system that the Generator/Voice will play
through the defined MIDI channel. If a new voice is added
to a piece, the voice won't be assigned to a specific MIDI
channel; if you haven't yet hooked-up a Generator/Voice
to a MIDI channel, Noatikl will decide on a free MIDI
channel to hook-up the Voice to when it starts playing.

The generator network interface works the same way in
both deskop and mobile versions, and looks similar, too.
You can see it in the central area of the Noatikl mobile
screen grab, below.

Voice Object

Every Noatikl piece includes one or more Voice Objects ("Voices"). These are MIDI generators and are the things
that actually generate the MIDI notes and MIDI events according to various parameter values used by it. They're
called Voices for historical reasons, but are equally well referred to as a "Generators".

Each Voice Object composes according to its defined Voice Type of which are 6, and each Voice Type has a
corresponding associated colour:

Tip: Where the interface displays the Voice's name (e.g. Fred), that element will flash when the Voice plays.

Voice Types (VT)

Rhythmic

Rhythmic Voices are the default Voice Type and compose according to the parameters in the Rhythmic /
Basics parameter set. Notes have their durations composed according to the Rhythm Rules you define for
your voice, to fit as well as possible within the bar structure of your piece.

Ambient

Ambient Voices have notes composed such that their durations are defined by the parameters in the Ambient
parameter set. Rhythm rules are not used for Ambient Voices. An Ambient Voice plays its notes without any
respect for tempo or bar timings! Ambient Voices are wonderful for creating drifting, floating sounds for either
background or foreground use as drones or for musical texture.

Follows

Following Voices are fascinating. They are used to create Voices which work in a call-response manner,
following the behaviour of other Voices in a variety of exciting ways according to parameters in the Following
parameter set.

Repeat Bar

Generator Network
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Repeat Bar Voices are like Rhythmic Voices, with the added feature that they can be defined to repeat work
that they have composed in previous bars, according to rules defined in the Repeat Bar parameter set.
When not repeating previous bars, Repeat Bar Voices work in exactly the same way as Rhythmic Voices.

Fixed Pattern

Fixed Pattern Voices are Voices that play in accordance with various fixed MIDI-like patterns. These patterns
have a specific syntax and are able to follow generative sequencing rules, and can adapt automatically to
changes in Scale Rules. They are great for bringing some structure to your composition. Fixed Pattern
Voices can also be capable of mutating their patterns while playing, according to parameters defined in the
Fixed Pattern parameter set. When not following a pattern (e.g. when mutating), Fixed Pattern Voices
compose as Rhythmic Voices.

Listening

Listening Voices are Voices that detect incoming MIDI note events (monophonic, not polyphonic) and present
them as a virtual composed note which can be followed by a Follows Voice, allowing you to create simple
hyperinstruments (something that generates music that can respond in some way to external events which
we also sometimes now refer to as adaptive generative music [AGM]).

Listening voices do not require any use of scripting, but in Noatikl Desktop they can also be used with
scripting for more advanced hyperinstruments.

Rule Object

Every Voice composes notes according to the settings of
4 types of Rule Objects it has associated with it.

The four Rule Objects are Scale Rule, Harmony Rule,
Next Note Rule, Rhythm Rule. Each Rule Object contains
one or more "Rules", such as "Major" or "Minor".

Each Rule is an array of the values of the elements for
that Rule Object (such as the values of 12 scale
intervals). These values represent the relative

probability (from 0% to 100%) (the "weighting") of that Rules' element being chosen by a Voice for a note to be
composed. An element with a value of 0 will not be chosen for composition.

Important: When the Pitch Range for a Voice is wide enough, Scale Rules will "wrap around" to accomodate the
extra range in notes available.

Changes to the values in these Rules, as with changes to any other NME parameter, allows an instant change in
the music generated.

Tip: Where the interface displays the Rule elements, tap or click one one at the appropriate position to change the
value of that element; the NME will attempt to make that element flash when it has been selected to play a note.

Rule Objects

Scale Rule

The Scale Rule selected for a Voice defines the notes in the musical scale that are available for use by that
Voice. You may create as many Scale Rules as you want. You typically give a Scale Rule a name that tells
you what it represents (such as Major or Minor).

Rule Object - Scale Rules
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12 Elements

Each with % weighting values

These elements represent the semitone distance from the Root note defined for this Piece, these being: 0ve
(root), m2, M2, m3, M3, 4, b5, 5, m6, M6, m7, M7

Harmony Rule

The Harmony Rule selected for a Voice defines how likely it is that a note for that Voice will harmonize at a
given musical interval in semitones with any note already composed (and in use by) by any *other* Voice.
You may create as many Harmony Rules as you want.

12 Elements

Each with % weighting values

These elements represent in semitones the possible harmonies available, these being: 0ve (root), m2, M2,
m3, M3, 4, b5, 5, m6, M6, m7, M7

Example

Imagine that you have three Voices, called X, Y and Z.

Imagine that at some time in the piece, the NME has already chosen to play note C for Voice X, and note G
for Voice Y. At that time, the NME thinks about composing a note for Voice Z. It looks at the notes available
for it to compose, and adjusts the probabilities of choosing each of those notes, by applying the Harmony
Rule element values for each of those two composed notes which are active at time (i.e. notes C and G).

Harmonies are always calculated based on a rising direction up from the Piece Root. So, if the Piece Root is
B and the NME is considering if it can compose note D for Voice Z, and it looks at the note it needs to
harmonize with which is note C for Voice X; then Noatikl figures-out the Harmony Rule values for Voice Z from
the C of Voice X, up and through the Octave (i.e. E, F, F#, G, G# etc.).

Next Note Rule

The Next Note Rule selected for a Voice defines the distances in semitones available to be used between
each note composed for that Voice. You may create as many Next Note Rules as you want.

12 Elements

Each with % weighting values

These elements represent in semitones the distance a new note will be from the last composed note, these
being: 0ve (root), m2, M2, m3, M3, 4, b5, 5, m6, M6, m7, M7

Rhythm Rule

The Rhythm Rule selected for a Voice defines the note durations available for notes played by that Voice.
This rule is combined with other factors, including the remaining length of time a Voice has left in the current
bar (the NME tries to avoid having notes from non-Ambient voices drifting across bar boundaries). You may
create as many Rhythm Rules as you want.

9 Elements

Each with % weighting values

These elements represent the permitted note durations, these being: 1, 1/2., 1/2, 1/4., 1/4, 1/8., 1/8, Triplet,
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Voice - Rhythmic

Voice Type - Rhythmic & "Basics" parameters.

The "Voice Rhythmic" parameters encompass the main parameters of every Voice and also govern those of the
default Voice Type, which is the Rhythmic Voice.

Name

Every voice in a Noatikl file has a unique name. You can use any name you want, provided it is not empty, and
provided it is not a single question mark (which has a reserved meaning for use with Rules, which you will find out
about later).

Mute

Toggle this setting (Yes/No) to mute or unmute the voice. Certain Voice Types might take some time to respond,
depending on how far in advance their notes are composed.

When the keyboard focus is on the Mute cell, you have various extra menu options available to you in the "Control"
Menu. These are as follows:

Solo Voice
Unmute All Voices
Mute All Voices

If you hold down the ctrl key when you click on the mute cell, you will toggle all other voice's mute states, without
changing the mute state of the voice that you ctrl-click on. This can be very handy.

Patch

Every Voice is assigned a given Patch. This specifies the sound that you will hear whenever the Voice plays a note.
The exact sound you hear depends on the sound source you have associated with the Voice; this could be the PSE
or you might be driving an external MIDI synth.

In general, the NME does not emit any MIDI bank select CC information for a Vvoice before it emits the Patch
Change MIDI event. However, you can force the NME to emit such information, by typing-in a special format patch
value; where you type-in the patch in the format: patch.msb.lsb, for example:

98.53.4

In this example, the NME will emit bank select CCs for both MSB and LSB according to the settings you supply (53
and 4 respectively, in this case). If you don't specify a value for the lsb, then the NME will only emit a Bank Select
MSB CC (CC number 0). If you supply the lsb, then the NME will also emit a Bank Select MSB CC (CC number 32).

Send MIDI Bank/Patch?

Not all software synthesizers for your favourite sequencer like having Patch data supplied to them via a Patch
Change MIDI event. If this is the case, simply change the Send MIDI Bank/Patch? parameter to No (unchecked),
and the NME won't send any MIDI patch change events.

MIDI Channel

A Voice emits data on a MIDI Channel. MIDI channels are numbered from 1 to 16. The default MIDI channel for a
Voice is actually MIDI channel 0 – which tells the NME to assign a free channel from 1 to 16 automatically, as best it

https://intermorphic.com/pse/3
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can. MIDI channel 10 is always reserved for percussion sounds, such as drum sounds or other untuned sound.

Voice Type

Every Voice composes according to its Voice Type.

Pitch

Set the Pitch to be the minimum pitch for which you want your Voice to compose. The NME will ensure that it
composes no notes less than this pitch value.

Phrase Length

Set this to define the shortest possible sequence of notes that your Voice will compose in sequence. The Voice
composes a sequence of notes, followed by a sequence of rests. The length of each sequence of notes is
governed by this and the Phrase Length Range parameter.

Phrase Length Range

This value defines the upper limit to the number of notes that your Voice will compose in sequence. For example, if
the Phrase Length is 3, and the Phrase Length Range is 25, then the minimum phrase will be 3 notes, and the
maximum phrase length will be (3+25) = 28 notes.

Phrase Gaps

Set this to define the shortest possible sequence of rests that your Voice will compose. Your Voice composes a
sequence of notes, followed by a sequence of rests. The length of each sequence of rests is governed by this and
the Phrase Gaps Range parameter.

Phrase Gaps Range

This value defines the upper limit to the number of rests that your Voice will compose in sequence. For example, if
the Phrase Gaps is 3, and the Phrase Gaps Range is 25, then the minimum phrase will be 3 rests, and the
maximum phrase length will be (3+25) = 30 rests.

Note Rest %

This value defaults to zero. If not zero, then the defined percentage of notes that would otherwise be played by
your Voice will instead be treated as a rests of the same duration. This is very useful for making any Voice sound
sparser. Give it a go: this parameter is very powerful, and applies to all Voice Types.

Voice - Ambient

Voice - Type Ambient

Units

You define the Unit of Measure for which the other Ambient Voice parameters are interpreted. This may be one of
the following values:

Seconds (thousandths of a)
The parameters including Duration are all interpreted as being in thousandths of a second (i.e. Milliseconds).
So, a Duration value of 1000 means one second.

Beats (60ths of a)
The parameters including Duration are all interpreted as being in 60ths of a beat. In the NME a Beat is



8/70

defined as being one crotchet; you get 4 beats in a bar of 4:4 music. So, a Duration value of 60 means one
beat. A Duration value of 30 means a quaver. A Duration value of 20 means a triplet.  A Duration value of 15
means a semi-quaver.  A Duration value of 240 means 4 beats (which is a full bar if the Piece Meter is 4:4).

Full seconds
The parameters including Duration are all interpreted as being in seconds. So, a Duration value of 10 means
ten seconds.

Duration

The Ambient Voice parameters govern how Ambient Voices work.

This defines the minimum duration for which the Ambient Voice will play when it composes a note. The actual value
chosen for each note is a value between Duration, and Duration plus the Duration Range. Each and every note
composed for this Ambient Voice will have a note whose duration is separately calculated.

Duration Range

This is combined with the Duration parameter, to determine the duration for which the Ambient Voice will play when
it composes a note. The actual value chosen for each note is a value between Duration, and Duration plus the
Duration Range. Each and every note composed for this Ambient Voice will have a note whose duration is
separately calculated.

Gap Minimum

This defines the minimum duration for which the Ambient Voice will play when it composes a rest. The actual value
chosen for each rest is a value between Gap Minimum, and Gap Minimum plus the Gap Range. Each and every
rest composed for this Ambient Voice will have a rest whose duration is separately calculated.

Tip: This is the Duration used for the Phrase Gaps / Phrase Gaps Range parameters i.e. it allows the duration of
gaps to be different to that of the notes.

Gap Range

This is combined with the Gap Minimum parameter, to determine the duration for which the Ambient Voice will play
when it composes a rest. The actual value chosen for each rest is a value between Gap Minimum, and Gap
Minimum plus the Gap Range. Each and every note composed for this Ambient Voice will have a note whose
duration is separately calculated.

Tip: This is the Duration Range used for the Phrase Gaps / Phrase Gaps Range parameters i.e. it allows the
duration of gaps to be different to that of the notes.

Phrase Length

Set this to define the shortest possible sequence of notes that your Voice will compose in sequence. The Voice
composes a sequence of notes, followed by a sequence of rests. The length of each sequence of notes is
governed by this and the Phrase Length Range parameter.

Phrase Length Range

This value defines the upper limit to the number of notes that your Voice will compose in sequence. For example, if
the Phrase Length is 3, and the Phrase Length Range is 25, then the minimum phrase will be 3 notes, and the
maximum phrase length will be (3+25) = 28 notes.

Phrase Gaps
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Set this to define the shortest possible sequence of rests that your Voice will compose. Your Voice composes a
sequence of notes, followed by a sequence of rests. The length of each sequence of rests is governed by this and
the Phrase Gaps Range parameter.

Phrase Gaps Range

This value defines the upper limit to the number of rests that your Voice will compose in sequence. For example, if
the Phrase Gaps is 3, and the Phrase Gaps Range is 25, then the minimum phrase will be 3 rests, and the
maximum phrase length will be (3+25) = 30 rests.

Note Rest %

This value defaults to zero. If not zero, then the defined percentage of notes that would otherwise be played by
your Voice will instead be treated as a rests of the same duration. This is very useful for making any Voice sound
sparser. Give it a go: this parameter is very powerful, and applies to all Voice Types.

Voice - Follows

Voice - Type Follows

The Follows Voice parameters govern how Following Voices work.

Select the Voice which you want your Voice to follow. If you don't specify a Voice to follow, then the following Voice
won't play. You may follow any Voice in the piece you want, of any type. You may even follow a Voice that is
following another Voice that is following another Voice... provided that you don't try to define a cyclic dependency
which loops back to the current Voice!

Percent

This parameter sets the percentage of notes that the Followed Voice responds to so as to emit a note. Set to 100 if
you want the Following Voice to emit a note for every note played by the Followed Voice. Set to a smaller value if
you want to thin-out the notes played by the Following Voice. This is also useful for building networks of chords, 
where if you have a number of Following Voices all following either each other or one main Voice, and if those
Following Voices have the Percent Parameter to less than 100, then sometimes you will hear dense chords, and
sometimes you will hear thinner chords.

Strategy

This parameter defines the pitch to use for a note generated by the Following Voice. The available values are:

Chordal Harmony
This causes the Following Voice to choose notes which respect the currently defined Scale, Harmony and
Next Note Rules.

Interval Within Scale Rule
This causes the Following Voice to choose notes which are offset from the followed note, such they are at an
interval within the Scale Rule, defined as a value randomly selected between the Shift / Interval and Shift /
Interval plus Shift / Interval Range values.

For example, if these values are 1 and 2 respectively, then each time a note is chosen, it will be between 1
and (1+2)=3 Scale Rule intervals up from the Followed Voice's note. It is important to understand that this
refers to the non-zeroed elements in the current Scale Rule, in other words only those notes that are
available within the Scale Rule.

So, in our example, if we were using a Major Scale Rule, and if the followed note were C4 (Middle C), and if
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Noatikl chose a value of 2 as its random value; then the played note would be E4 (Middle C), which is the
second note up from Middle C within the Major Scale Rule.

Semitone Shift
This causes the Following Voice to choose notes which are offset up from the followed note, such they offset
from the followed note by a number of semitones which is a value randomly selected between the Shift /
Interval and Shift / Interval plus Shift / Interval Range values. A note chosen in this way ignores the current
Scale Rule.

For example, if these values are 1 and 2 respectively, then each time a note is chosen, it will be between 1
and (1+2)=3 semitones up from the Followed Voice's note.

So, in our example, if we were using a Major Scale Rule, and if the followed note were C4 (Middle C), and if
Noatikl chose a value of 3 as its random value; then the played note would be D#4 (Middle D#), which is the
third semitone note up from Middle C. This value is used even though it is not in the current scale rule.

Units

You define the Unit of Measure by which the Delay and Delay Range parameters are interpreted. This may be one
of the following values:

Seconds (thousandths of a)
The parameters including Duration are all interpreted as being in thousandths of a second (i.e. Milliseconds).
So, a Duration value of 1000 means one second.

Beats (60ths of a)
The parameters including Duration are all interpreted as being in 60ths of a beat. In Noatikl a Beat is defined
as being one crotchet; you get 3 beats in a bar of 4:4 music. So, a Duration value of 60 means one beat. A
Duration value of 30 means a quaver. A Duration value of 20 means a triplet. A Duration value of 15 means
a semi-quaver. A Duration value of 240 means 4 beats (which is a full bar if the Piece Meter is 4:4).

Full seconds
The parameters including Duration are all interpreted as being in seconds. So, a Duration value of 10 means
ten seconds.

Delay

This defines the minimum delay after which the Following Voice will play a followed note. The actual value chosen
for each note is a value between Delay, and Delay plus the Delay Range. Each and every note composed for this
Following Voice will have a note whose delay is separately calculated.

Delay Range

This is combined with the Delay parameter, to determine the delay after which the Following Voice will play a
followed note. The actual value chosen for each note is a value between Delay, and Delay plus the Delay Range.
Each and every note composed for this Following Voice will have a note whose delay is separately calculated.

Shift / Interval

Used when the Strategy is either Interval Within Scale Rule or Semitone Shift.

This causes the Following Voice to choose notes which are offset in some way from the followed note, according to
the Strategy; where the offset is defined as a value randomly selected between the Shift / Interval and Shift /
Interval plus Shift / Interval Range values.
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S/I Range

This represents the "Shift/Interval Range", and is used when the Strategy is either Interval Within Scale Rule or
Semitone Shift.

This causes the Following Voice to choose notes which are offset in some way from the followed note, according to
the Strategy; where the offset is defined as a value randomly selected between the Shift / Interval and Shift /
Interval plus Shift / Interval Range values.

Voice - Repeat Bar

Voice - Type Repeat Bar

The Repeat Bar parameters govern how Repeat Bar Voices work. Repeat Bar Voices compose as if they were of
Rhythmic Voice Type.

Voice

You define the name of the Voice from which you would like, from time-to-time, to repeat past bars of music. If you
simply want to repeat bars played in the past for the current Voice, simply select the magic value of '?', which is also
the default value.

Percent

When the Voice starts composing a new bar, it takes a look at this parameter value. This defines for what percent
of the time the Voice should repeat previously-composed music. Set this parameter to 100 if you always want past
composed music to be repeated (where available!); set to 0 if you never want past music repeated by this Voice.
When the Voice doesn't choose to repeat past data it composes a new bar of music were it to be of Rhythmic Voice
Type.

Bars

Defines the number of bars for which the Voice should repeat a past-composed chunk of music. The actual value
chosen is somewhere between Bars and Bars + Bars Range.

Bars Range

Defines the upper limit of the number of bars for which the Voice should repeat a past-composed chunk of music.
The actual value chosen is somewhere between Bars and Bars + Bars Range.

History

Defines the number of bars in the past, from which the Voice will choose the past-composed music to repeat. The
actual value chosen is somewhere between History and History + History Range.

History Range

Defines the upper limit of the number of bars in the past, from which the Voice will choose the past-composed music
to repeat. The actual value chosen is somewhere between History and History + History Range.

Voice - Pattern

Voice - Type Fixed Pattern

The Fixed Pattern parameters govern how Fixed Pattern Voices work. Fixed Pattern Voices compose as if they
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were of Rhythmic Voice Type.

See the also the NME Pattern Syntax section.

Use Percent

When the Voice starts a new sub-pattern at the start of a bar, it consults the value you have defined for Use
Percent. This parameter determines the probably of the Voice using the Pattern for the bar; or alternatively,
compose a completely new bar (that you will hear only once!) were it to be of Rhythmic Voice Type.

If Use Percent is 100, then the Voice will always use the pattern. If Use Percent is 50, then teh Voice will instead
compose a new bar every other bar or so. Note that the Voice will never interrupt a sub-pattern that it is playing; the
Use Percent parameter is considered only on a sub-pattern boundary, at the start of a new bar.

Mutation Factor

The mutation factor is used when a bar is considered for mutation (which can happen only if Bars Between is not
zero! The Mutation Factor determines the level of mutation to apply. If set to 10.0%, then when playing from a sub-
pattern, this means that each note that would be played from the pattern, has a 10% chance of having a different
one composed, with subsequence pattern playbacks keeping that mutation. Note that if Mutate Rhythm? is set to
Yes, then if the composed note is longer than the composed-over pattern note, this might overlap and cancel-out
some other notes in the sub-pattern.

Bars Between

This parameter defines the number of bars that the Voice waits between, before trying to mutate a bar in a pattern
according to the Mutation Factor. If Bars Between is set to zero, the Voice can never mutate. Set to 1 if you want
mutation every bar, 2 if you want mutation every other bar, etc. ...

The actual number of bars used is selected randomly each time, somewhere in the range from Bars Between, to
Bars Between plus Bars Range.

Bars Range

This parameter is used to help define the number of bars between attempts by the Voice to mutate the current
pattern. The actual number of bars used is selected randomly each time, somewhere in the range from Bars
Between, to Bars Between plus Bars Range.

Mutate Rhythm?

If set to No, then the timing of the sub-pattern is preserved perfectly; only the frequency of the pattern notes will be
changed when the pattern is mutated. Otherwise, the duration of each note is chosen from the rhythm rules and
phrase/phrase gap rules for the Voice.

Meter

Defines the Meter to be used by the Voice, such 4:4 or 3:4 or 6:8. A value of ?, which is the default, means to use
the Meter defined for the Piece. A different value allows the Voice to work with a completely different meter, which
can be used for interesting polyphonic effects.

Patterns

Defines the Pattern to be used by a Fixed Pattern Voice.

Select the Patterns parameter to display any Pattern Editor Dialog that is available. Information on the syntax to use
is detailed below.
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Pattern Syntax Overview

The pattern syntax is somewhat complicated, and, until such time as we have created a pattern editor for the NME,
will require a bit of effort to get to grips with.

A pattern is a text string in a specific format, surrounded by < and > symbols. Patterns can be grouped together as
list of patterns. Because of this we refer to patterns as a "Pattern" when there is only one, or as "Sub-Patterns"
when there are many in the list of patterns. We know it is a bit confusing, so we'll say it again in another way: each
Pattern is made-up of a number of Sub-Patterns.

There are 4 types of Sub-Pattern:

Note
R - Rhythm only: Defines note durations to use, but leaves selection of the note pitches to use up to
the Voice acting as a Rhythmic Voice. A negation duration represents a rest.

Important Note: This is the only pattern type in a Noatikl file that can be imported into Wotja.
B - Both: i.e. "Melodic" pattern using scale rule intervals. Includes a series of both paired note
durations and scale rule interval values. A scale rule interval value of 1 represents the 0ve scale
interval used by the Voice and a value of 0 represents a rest.
F – Forced Frequency: i.e. "Melodic" pattern using fixed MIDI pitches. Defines the root pitch (60 is
Middle C) to use for the pattern and a series of both paired note durations and relative pitches. The
pitch values are relative to the root pitch and are independent of scale rule. A pitch value of 0
represents the root pitch and a value of -1 means treat this note as a rest note. These patterns can be
useful for drum riffs, e.g. with MIDI drums.

Sequence
S – Sequence : Sequenced patterns allow the NME to use generative rules to select which sub
patterns to use while playing a pattern as a generative sequence of sub-patterns.

The NME employs an underlying "time unit" that is 1/60th of a crotchet/quarter note. NME note Duration values map
onto standard music notation in the following way (irrespective of meter) [# NME time units - Composed note
length]:

240 - whole note (i.e. one bar of 4:4)
120 - minim/half note
60 - crotchet/quarter note
30 - quaver/eighth note
20 - triplet/twelfth note
15 - semi-quaver/sixteenth note

So by way of example:

one bar of 4:4 is 4 * 60 = 240 NME time units.
one bar of 3:4 is 3 * 60 = 180 NME time units.
one bar of 2:4 is 2 * 60 = 120 NME time units.
one bar of 1:4 is 1 * 60 = 60 NME time units.
one bar of 6:8 is 6 * 30 = 180 NME time units.
one bar of 9:8 is 9 * 30 = 270 NME time units.

You are of course free to experiment using other time unit values, which will mean different things. E.g. 10 time
units is a 24th note etc.

Note Sub-Pattern Syntax:

https://intermorphic.com/wotja/guide/#content
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Tip: To aid understanding and visual clarity, we use the following color coding: durations, velocity values and scale
intervals.

<[prob][.M] pattype {[dur][.vff[-vffr]] [scaleint]}*>

Where:

prob : the relative probability that this sub-pattern is selected; relevant only where there is more than one
sub-pattern! The default value is 100%.
M : Flag indicating that the sub-pattern is to be "muted", i.e. not allowed to be selected. This can be useful
for testing of individual sub patterns; where you might want to "solo" a sub-pattern by muting out all the
others.
pattype : One of:

R: Rhythm pattern
B: Both pattern
F: Forced Frequency pattern type, followed by the root note in MIDIpitch.  e.g. F60.

dur : Note Duration / NME time units.
See above for note duration values.

In R patterns a negative duration indicates a rest for that time; in F patterns a pitch of -1 indicates a
rest for the note duration.

If a note sub-pattern is not an exact even number of bars (e.g. 2 and and half bars at the current
meter!) then the engine will pad to silence to the end of the nearest bar boundary.

vff: Velocity Force Factor (optional, any integer value)
vffr: Velocity Force Factor Range (optional, any integer value and used in conjunction with the above).
Note: Velocity Force Factor is an INTEGER % SCALE FACTOR applied to the velocity, where the
velocity is first determined from the velocity envelopes. For example, in a pattern [dur][.vff[-vffr]] 60.50
means a note of length 60 Noatikl time units with 50% VFF scaling, 30.15 means a note of length 30
Noatikl time units with 15% VFF scaling, and 120.100-20 means a note of length 120 Noatikl time units
and with 100% VFF scaling with a range of 20%.

The scaled pattern note velocity can never be any less than 1.
The scaled pattern note velocity can never be any greater than 127.
Note that a pattern note velocity scaling factor of 0 always returns minimum MIDI velocity, which
is 1. You cannot use a factor of 0 to "completely mute" a note.
Example: A Voice's velocity (min) envelope has a value of 100, with a velocity range envelope
vallue of 20 - the velocity for a given note is selected randomly in that range, to be (say) 104.
Where defined, the pattern note's Velocity Force Factor is used to scale that velocity, to a final
value from 1 to 127. e.g. if the Velocity Force Factor is 50 (%), in this example we'd chose a final
velocity value of: 104 * 50 (%) = 52. The Velocity Force Factor Range value, if defined, applies
a range to the scaling factor.

scaleint: Scale interval (not present for Rhythm patterns).
B rule: interpreted as being the first valid note in current Voice's Scale Rule; i.e. the first element in the
Voice's Current Scale Rule which does not have a zero value. "1" is therefore usually the root note (c.f.
the Pitch parameter). "0" has the special meaning of indicating a "REST" for the note duration.
F rule: distance in semitones up from the root note (so "0" means the root note). E.g. if F60 (Middle C),
then a pitch value of 5 means MIDI pitch 65.

Sequence Sub-Patterns Syntax
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<S100 R 1.20 2.1 1-2.1-4 2.1>

Syntax

<[S][prob][.M] R {[seqnum[-seqnumrange].[repeattimes[-repeattimesrange]] [seqnum[-seqnumrange].[repeattimes[-
repeattimesrange]]}* >

Where:

S : identifies a sequence sub-pattern
prob : relative probability of being chosen when there is more than one sequence sub-pattern.
M: Mute the sub-pattern (i.e. prevent it being selected!). If none can be selected, then a non-sequence sub-
pattern is chosen to play at random as usual each time.
R: Rhythm pattern type (always required)
seqnum: Sequence Number.

The index of the non-sequence sub-pattern to play. Default is 1. The sub-patterns are numbered from
1 up.
seqnumrange : Sequence Number Range. Default is 0.

repeattimes: Repeat Times Minimum.
The number of times to repeat this sub-pattern, when selected. A value of "0", will cause the sub-
pattern (when selected) to keep playing forever until the end of the piece! Default is 1.
repeattimesrange : Repeat Times Range. Default is 0.

Which sub-pattern is chosen by the Voice depends on a few things:

If there is at least one sequenced sub pattern, then a sequence is used to drive the sub-pattern. Which sequence
to use, is based on the Voice making a weighted random selection from the available sub-patterns. When (if!) the
sequenced sub-pattern end is reached, the Voice will make another selection as to which sequenced sub-pattern to
use.

Otherwise, a sub-pattern is chosen, based on the Voice making a weighted random selection from the available
sub-patterns. This sub-pattern is played through to the end, at which point the Voice will make another selection as
to which sub-pattern to play.

A Note Sub-Pattern that is less than a whole number of bars at the Voice's current Meter, will be padded
automatically with silence to ensure that it remains bar synchronised.

Patterns: Examples

The NME has its own pattern format, which allows it to play specified notes and rests in different ways. Patterns are
affected by the various Rules being used by the Voice.

Tip: To aid understanding and visual clarity in the examples, we use the following color coding: durations, velocity
values and scale intervals.

Below are a number of example patterns. Copy and paste these into Noatikl to try them out.

Rhythm:   <100 R 60 60 60.127 60>

Both:     <100 B 60.15-30 1 60 2 60.127 3 15 7>

Forced Frequency:   <100 F60 60.127 1 60 4 30 5 15.70-120 7>

Sequence: <S100.M R 1.1 2-0.1-0 3-0.1-0 >
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Two patterns. Select randomly from these two each time!

   <100 B 60 1 60 2 60 3 60 4>

  <100 B 30 9 30 8 30 7 30 6 30 5 30 4 30 3 30 2>

 

Forced Frequency pattern. Plays note with pitch 58 (or MIDI patch 59 on Ch10): note on, note off, note on, note off
etc.

  <100 F58 15 1 45 -1 15 1 45 -1 15 1 45 -1>

 

Forced Frequency pattern: Plays a series of notes for a whole bar (or patches in the drum kit on Ch10) starting at
base pitch 40, each one a 16th note...

  <100 F40 15 1 15 7 15 6 15 13 15 2 15 8 15 4 15 11 15 13 15 2 15 8 15 2 15 2 15 8 15 4 15 14>

 

Two sequenced sub-patterns.  Play 1 once, then 2 once...

   <S100 R 1.1 2.1>

  <100 B 60 1 60 2 60 3 60 4>

  <100 B 30 9 30 8 30 7 30 6 30 5 30 4 30 3 30 2>

 

Two sequenced sub-patterns. Play 1 twice, then 2 twice...

   <S100 R 1.2 2.2>

  <100 B 60 1 60 2 60 3 60 4>

  <100 B 30 9 30 8 30 7 30 6 30 5 30 4 30 3 30 2>

 

Two sequenced sub-patterns. Play 1 or 2 twice, then 1 or 2 twice...

   <S100 R 1-1.2 1-1.2>

  <100 B 60 1 60 2 60 3 60 4>

  <100 B 30 9 30 8 30 7 30 6 30 5 30 4 30 3 30 2>

 

Two sequenced sub-patterns. Play 1 once, then 2 twice, the one or 2 once, then 2 once...

   <S100 R 1.1 2.2 1-1.1 2.1>

  <100 B 60 1 60 2 60 3 60 4>

  <100 B 30 9 30 8 30 7 30 6 30 5 30 4 30 3 30 2>

 

Two sequenced sub-patterns. Play 1 once, then 2 forever...
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   <S100 R 1.1 2.0>

  <100 B 60 1 60 2 60 3 60 4>

  <100 B 30 9 30 8 30 7 30 6 30 5 30 4 30 3 30 2>

Voice - Chords

The Chord parameters let you configure any Voice Type to generate chords automatically.

In outline, use the Depth and Depth Range values to define the "Chord Depth"; which is the number of notes that
will play at any one time for a given Voice. The first note in any chord is composed according to the normal
mechanism for the Voice Type; additional notes that cause a chord to be built-up may be generated automatically
according to the Chord parameters.

Depth

Specify the minimum Depth of chord that you want your Voice to play with. A value of 1 will mean that the Voice will
not chord (unless the Depth Range parameter is greater than zero).

The Depth defines the number of notes that are played by the voice at any one time.

Depth Range

Specify the relative maximum Depth of chord that you want your Voice to play with. A value of 0 means that
whenever the Voice is played, it will play a number of notes equal to the Depth. A value of one or more means that
whenever the Voice is played, it will play a number of notes equal to a randomly selected value between the Depth
and the Depth plus the Depth Range.

Percent

This parameter tells the Voice the percentage chance that it should actually emit any given note in the chord (after
the first note, of course!). Set to 100 if you want the Chording Voice to always emit a note for every note played by
the Voice. Set to a smaller value if you want to thin-out the notes played within the chord. This allows you to create
chords of varying depth; sometimes dense, sometimes thin.

Strategy

This parameter tells the Voice what it should do when it decides the pitch to use for a note generated within a
chord. The available values are:

Chordal Harmony
This causes the Voice's chord notes to be selected according to the currently defined Scale, Harmony and
Next Note Rules.

Interval Within Scale Rule
This causes the Voice's chord note to be selected offset from the followed note, such they it is at an interval
within the Scale Rule beyond the previous note in the chord, defined as a value randomly selected between
the Shift / Interval and Shift / Interval plus Shift / Interval Range values.

For example, if these values are 1 and 2 respectively, then each time a note is chosen within the chord, it will
be between 1 and (1+2)=3 Scale Rule intervals up from the previous note in the chord. It is important to
understand that this refers to the non-zeroed elements in the current Scale Rule, in other words only those
notes that are available within the Scale Rule.

So, in our example, if we were using a Major Scale Rule, and if the first note in the chord were C4 (Middle C),
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and if the Voice chose a value of 2 as its random value; then the played note would be E4 (Middle C), which
is the second note up from Middle C within the Major Scale Rule.

Semitone Shift
This causes the the Voice's chord note to be selected offset up from the previous note in the chord, such it is
offset from the previous chord note by a number of semitones which is a value randomly selected between
the Shift / Interval and Shift / Interval plus Shift / Interval Range values. A note chosen in this way ignores the
current Scale Rule.

For example, if these values are 1 and 2 respectively, then each time a note is chosen, it will be between 1
and (1+2)=3 semitones up from the previous note in the chord.

So, in our example, if we were using a Major Scale Rule, and if the previous note in the chord were C4
(Middle C), and if the Voice chose a value of 3 as its random value; then the played note would be D#4
(Middle D#), which is the third semitone note up from Middle C. This value is used even though it is not in the
current Scale Rule.

Units

You define the Unit of Measure by which the Delay and Delay Range parameters are interpreted. This may be one
of the following values:

Seconds (thousandths of a)
The parameters including Duration are all interpreted as being in thousandths of a second (i.e. Milliseconds).
So, a Duration value of 1000 means one second.

Beats (60ths of a)
The parameters including Duration are all interpreted as being in 60ths of a beat. In the NME a Beat is
defined as being one crotchet; you get 3 beats in a bar of 4:4 music. So, a Duration value of 60 means one
beat. A Duration value of 30 means a quaver. A Duration value of 20 means a triplet.  A Duration value of 15
means a semi-quaver.  A Duration value of 240 means 4 beats (which is a full bar if the Piece Meter is 4:4).

Quantized Beats (60ths of a)
This works the same way as Beats (60ths of a) except that where the Delay has a special value of 10, 15 or
20; the delay is interpreted in a special way that is very useful for some breakbeat-based music. Specifically,
in this case, the calculated value for the delay is rounded to the nearest sub-multiple of the Delay value. So,
for example, if the engine calculates a value of 43, and if Delay is 20, the used value for the delay is actually
40 (which is the nearest multiple of 20).

Delay

This defines the minimum delay after which the Chording Voice will play a followed note. The actual value chosen
for each note is a value between Delay, and Delay plus the Delay Range. Each and every note composed for this
Chording Voice will have a note whose delay is separately calculated.

Delay Range

This is combined with the Delay parameter, to determine the delay after which the Chording Voice will play a
followed note. The actual value chosen for each note is a value between Delay, and Delay plus the Delay Range.
Each and every note composed for this Chording Voice will have a note whose delay is separately calculated.

Shift / Interval

Used when the Strategy is either Interval Within Scale Rule or Semitone Shift.



19/70

This causes the Chording Voice to choose notes which are offset in some way from the followed note, according to
the Strategy; where the offset is defined as a value randomly selected between the Shift / Interval and Shift /
Interval plus Shift / Interval Range values.

S/I Range

This represents the "Shift/Interval Range", and is used when the Strategy is either Interval Within Scale Rule or
Semitone Shift.

This causes the Chording Voice to choose notes which are offset in some way from the followed note, according to
the Strategy; where the offset is defined as a value randomly selected between the Shift / Interval and Shift /
Interval plus Shift / Interval Range values.

Pitch Offset

This parameter defines the amount that the pitch of each note in the chord should be offset, in semitones, from the
previous note in the chord; the actual value selected might be overridden according to the various rules that apply
to the Voice, but in general, this parameter allows you to "shape" a chord to have a given range of pitch values. In
combination with the Delay-related parameters, this allows you to create some very interesting arpeggiation effects.

For example, a value of +12 would tend to space each note in the chord by a range of 12 semitones (which is one
octave), with each subsequent value in the chord being higher in pitch that the previous.

For example, a value of -12 would tend to space each note in the chord by a range of 12 semitones (which is one
octave), with each subsequent value in the chord being lower in pitch that the previous.

Velocity Factor

This parameter allows you to specify the range of relative velocities for the notes in a chord. Each subsequent note
in the chord is the defined percentage louder (for a positive value) or quieter (for a negative value) than the
previous note in the chord. A value of zero means that all notes in the chord are played with the same velocity.

The Voice velocity envelope values are ignored when this parameter is applied.

For example, a value of -30 would tell the Voice to generate its chords such that each auto-chorded note is 30%
quieter than each preceding note in the chord; giving a noticeable tailing-off effect.

Voice - Listening

Voice - Type Listening

The monophonic "Listening Voice" listens out on its MIDI channel for incoming MIDI notes. It is silent (it does not
generate or emit MIDI notes). When a note is detected, e.g. C60, it echoes a virtual note that can be "heard" only
by a Following Voice which is then used to create an actual note. It will only detect a subsequent note if it first
receives a note off for the previous note.

The virtual note created by a Listening Voice is pitch shifted, if necessary, to fit within the band of pitch values set
by its Pitch and Pitch Range parameters (see Rhythmic Voice).

Playing with a Listening Voice:

Ensure Noatikl has been setup, as below.
Ensure your Listening Voice is on the MIDI channel you are expecting to detect MIDI notes, and follow that
voice with a Following Voice and suitable patch (PSE Sound). Tip: Use the Chording parameters to play
chords!
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Press play in Noatikl app to start your piece and for the Listening Voice to detect the MIDI notes fed into it
(and remember that the Listening Voice will only detect a subsequent note if it first receives a note off for the
previous note!).

Noatikl Desktop Setup:

MIDI emitting app or MIDI Device feeding MIDI notes into the Noatikl app
Load the MIDI app (e.g. MIDI Mock) and ensure you have it set up to send MIDI notes on the MIDI channel
you want, e.g. MIDI Channel 1 or Omni.
Load Noatikl and in the top Control Bar ensure that you have set the MIDI Input droplist set to the mechanism
you are using to feed your MIDI notes into Noatikl.
In the top Control Bar also set the "Listen?" checkbox to on.

Noatikl Mobile Setup:

MIDI emitting app or MIDI Device feeding MIDI notes into the Noatikl app
Load the MIDI app (e.g. MIDIKeys) and ensure you have it set up to send MIDI notes on the Virtual MIDI
channel you want, e.g. MIDI Channel 1 or Omni.
In Noatikl > Settings, select the MIDI Input button which takes you to the MIDI Input Devices screen:

Toggle on the relevant Channels for your desired MIDI Input Device(s).
Ensure that the "Enable MIDI Input" toggle at the bottom is set to on.

Voice - Rules

The Voice Rule parameters let you select the various rules that govern how your Voice works. The Rules
themselves are edited in the relevant Rule Object. See Rule Objects.

Harmony Rules

Select the Harmony Rule that you want your Voice to use. If you select the value labelled ?, this tells the Voice to
use the value defined in the Piece Object. If that value is in turn the ? value, then your Voice will choose a rule to
use at random when it starts playing. See Rule Objects.

Next Note Rules

Select the Next Note Rule that you want your Voice to use. If you select the value labelled ?, this tells the Voice to
use the value defined in the Piece Object. If that value is in turn the ? value, then your Voice will choose a  rule to
use at random when it starts playing. See Rule Objects.

Rhythm Rules

Select the Rhythm Rule that you want your Voice to use. If you select the value labelled ?, then your Voice will
choose a rule to use at random when it starts playing. See Rule Objects.

Scale Rules

Select the Scale Rule that you want your Voice to use. If you select the value labelled ?, this tells the Voice to use
the value defined in the Piece Object. If that value is in turn the ? value, then your Voice will choose a rule to use at
random when it starts playing. See Rule Objects.

Harmonise?

The default value for this parameter is "Yes", which means that the Voice will be considered for harmonisation with
other voices. Set to "No" if for some reason you do not want other voices to harmonize with this voice.

https://intermorphic.com/noatikl/guide/#noatikl-mobile-settings
https://itunes.apple.com/gb/app/midikeys-handy-piano-keyboard/id363609665?mt=8
https://intermorphic.com/noatikl/guide/#listen
https://intermorphic.com/noatikl/guide/#midi-input-list
https://intermorphic.com/noatikl/guide/#control-bar
https://itunes.apple.com/gb/app/midi-mock/id438240325?mt=12
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Voice Root

Normally, you want your Voice to use the Piece Root. This is represented by the value ? However, sometimes you
really want to force your Voice to use a different Root note; in which case, set the Voice Root to be whatever value
suits.

This allows you to work-around the  following sort of problem:

Imagine that you have a sampler, wher you load-up a variety of loops against MIDI note C3 up to D3. To have your
piece drive this from a Rhythmic Voice such that the sounds you hear are not affected by changes to the Piece
Root, you should set the Voice Root to e.g. C3 and your Voice will then be unaffected by changes to the Piece
Root. Note that in this specific example, it would probably be a good idea to set the Harmonize? Flag to No.

Voice - Scripts

Note: Scripts are supported ONLY in Noatikl Desktop versions (Standalone / Audio Plugins).

The Voice Scripts parameters allow you to embed small Trigger Scripts, which are small bits of code in the widely
used Lua language, that are triggered when various events happen when the Voices is playing. Using trigger
scripts allows you to tell the Voice to behave in powerful ways while it is playing. See Scripting for further details.

Start

Select to show the Start trigger script in the Script Editor Window.

The Start Trigger Script is called once at the start of the Piece, when the piece starts playing.

function nt_trigger_start()
  print ("Voice start!")
end

Bar

Select to show the Bar trigger script in the Script Editor Window.

The Bar Trigger Script is called at the start of every bar while the piece is playing.

function nt_trigger_bar(bar)
  print ("Voice Bar number", bar)
end
  

Composed

Select to show the Composed trigger script in the Script Editor Window.

The Composed Script is called when Noatikl composes a note. Use this to emit MIDI CC events and what have you.

function nt_trigger_composed(noteon, channel, pitch, velocity)
  print ("Voice Composed", noteon, channel, pitch, velocity)
end
  

MIDI In CC

Select to show the MIDI In CC trigger script in the Script Editor Window.
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The MIDI In CC Trigger Script is called whenever a MIDI CC event is received by the MIDI Input device.

function nt_trigger_midiin_cc(channel, cc, value)
  print ("Voice MIDI In CC", channel, cc, value)
end
  

MIDI In Note

Select to show the MIDI In Note trigger script in the Script Editor Window.

The MIDI In Note Trigger Script is called whenever a MIDI Note On or Off event is received by the MIDI Input device.

function nt_trigger_midiin_note(noteon, channel, pitch, velocity)
  print ("Voice MIDI In note ", noteon, channel, pitch, velocity)
end
  

Stop

Select to show the Stop trigger script in the Script Editor Window.

The Stop Trigger Script is called once at the end of the Piece, just as the Piece stops playing.

  function nt_trigger_stop()
    print ("Piece stop!")
  end
  

See Also

Scripting Overview
Trigger Scripts
Scripting Reference
Noatikl as a Hyperinstrument

Voice - Comments

This Voice Comments parameters allow you to store comments in your Voice, in the form of copyright information
and any notes you might want to make for future reference.

Copyright

Enter the Copyright information you might want to record for the Voice. In the case of a Voice from a template pack,
this might contain a copyright notice associated with that template.

Notes

Enter any detailed notes you might want to make about this Voice for future reference.

Voice - Articulation

The Voice Articulation parameters define the percentage of the duration of composed note, i.e. they determine how
long a composed note actually plays for. The NME used to always compose notes to be played "Legato" (no gap
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between one note and the next) - this allows you to play them staccato.

Articulation (min)

1 is very staccato and 100 is legato (the new default).

Articulation range

Max articulation is the value of Articulation (min) + Articulation range, and is used in combination with the variation
values (below).

Articulation variation (min)

The minimum variation in staccato between notes, c.f. other parameters that adopt the min + range approach.

Articulation variation range

The range in variation of stacatto between the notes (in addition to the min).

Voice - Controllers

The Voice Controllers parameters define some of the key MIDI controller values that are emitted by the Voice.

Damper/Hold (64)

Set this value to other than the default of "-1", if you want to emit a Damper/Hold MIDI controller (MIDI CC 64) at the
specified value on this Voice's MIDI line. This is a funny MIDI controller, with only two states; in that a value of 64 or
greater activates Damper/Hold, and any value of 63 or less means to turn it off! Leave this value at the default of "-
1" if you don't want the Voice to emit any information for this MIDI controller.

Harmonic Content (71)

Set this value to other than the default of "-1", if you want to emit a Harmonic Content MIDI controller (MIDI CC 71)
at the specified value on this Voice's MIDI line. Leave this value at the default of "-1" if you don't want the Voice to
emit any information for this MIDI controller.

Reverb (91)

Set this value to other than the default of "-1", if you want to emit a Reverb MIDI controller (MIDI CC 91) at the
specified value on this Voice's MIDI line. Leave this value at the default of "-1" if you don't want the Voice to emit
any information for this MIDI controller.

Chorus (93)

Set this value to other than the default of "-1", if you want to emit a Chorus MIDI controller (MIDI CC 93) at the
specified value on this Voice's MIDI line. Leave this value at the default of "-1" if you don't want the Voice to emit
any information for this MIDI controller.

Damper Release

If you are using Damper/Hold (64), then you will find that your notes can start building-up and never decay! In which
case, set the Damper Release parameter to "Yes", which tells the Voice to momentarily release the damper just
before the end of every bar. This prevents build-up of notes and generally sounds wonderful.

Portamento (65)

Set this value to other than the default of "-1", if you want to emit a Portamento MIDI controller (MIDI CC 65) at the
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specified value on this Voice's MIDI line. Leave this value at the default of "-1" if you don't want the Voice to emit
any information for this MIDI controller.

MIDI Channel Sharing

The default value of "Yes" means that this Voice can share its MIDI channel with other Voices. This is only
considered if you have defined the MIDI Channel parameter for a Voice to be 0.

Voice - MicroCtrl

The Voice Microcontroller parameters (there are two) allow you to define very powerful Microcontrollers to be
associated with your Voice.

Microcontrollers are very powerful and you can think of them as built-in, highly configurable MIDI event generators.
They can either synchronise to the tempo of your piece, or you can let them run free-floating. Experiment with them
– they can do a huge amount to make your music interesting and dynamic.

Tip: if you want to synchronise your Microcontroller to the time-base, so that your MIDI controller is synchronised to
bar boundaries in your music, you'll need to use the Beat Cycle Length parameter.

MIDI CC

This tells your Voice which MIDI controller (also referred to as the MIDI CC) to emit for this microcontroller. When
the Microcontroller is active, the Voice will emit values for this MIDI controller that change at various times, with
behaviour that you define using the various parameters in this Parameter.

Mode

The Mode defines the shape of the waveform that the Voice will use to shape this waveform.

The Mode may be one of the following values:

-1 – Off
The microcontroller is off. This is the default value.

0 - Random Drift
The microcontroller will drift between the Minimum and Minimum plus Range, changing at times specified by
the Update and Update Range parameters, by an amount between the Change and Change plus Change
Range parameters.

1 - LFO (Min-Max-Min)
A triangular waveform, that starts at the minimum value, works up to the maximum value, and works back to
the minimum value.

2 - LFO (Max-Min-Max)
A triangular waveform, that starts at the maximum value, works down to the minimum value, and works back
to the maximum value.

3 - Sawtooth (Min-Max)
A sawtooth waveform, that starts at the minimum value, works up to the maximum value, and then starts
again from the minimum value.

4 - Sawtooth (Max-Min)
A sawtooth waveform, that starts at the maximum value, works down to the minimum value, and then starts
again from the maximum value.
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Minimum

Defines the minimum value that may be emitted by the Microcontroller.

Range

The microcontroller will emit a value between the Minimum and Minimum plus Range values.

So for example, if you define Minimum to be 20, and Range to be 100, the value that is emitted will be in the range
20 to 120 inclusive.

Change

Defines the amount by which the microcontroller will change, every time it is allowed to change. Typically set to a
value of 1. If this value is set to 0, the Microcontroller will change only if the Change Range is greater than or equal
to 1.

Change Range

Defines the upper limit to the amount by which the microcontroller will change, every time it is allowed to change.
Typically set to a value of 1. If this value is set to 0, the Microcontroller will change only if the Change Range is
greater than or equal to 1.

For example, if you define Change to be 1, and Change Range to be 3, the value that is emitted will vary by a value
between 1 and (3+1)=4 each time.

Update

Defines the minimum time in milliseconds between changes in the emitted Microcontroller value. The system might
not be able to emit changes as quickly as you want, if you set a very small value! If you don't want changes to
happen very often, then use a large value.

Ignored if Beat Cycle Length is non-zero.

Update Range

Defines the upper limit in the time in milliseconds between changes in the emitted Microcontroller value. Use this
parameter to apply some uncertainty in when the changes will occur.

For example, if you define Update to be 1000, and Update Range to be 500, the value that is emitted will change
every 1000 to 1500 milliseconds (or in other words, every 1 to 1.5 seconds).

Ignored if Beat Cycle Length is non-zero.

Update Units

You define the Unit of Measure by which the Update and Update Range parameters are interpreted. This may be
one of the following values:

Seconds (thousandths of a)
The Update and Update Range are interpreted as being in thousandths of a second (i.e. Milliseconds). So, a
Update value of 1000 means one second.

Full seconds
The Update and Update Range are interpreted as being in seconds. So, a Update value of 10 means ten
seconds.
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Beat Cycle Length

This parameter is critical for generating effects which synchronise with the bar timing of your Voice. If you want to
achieve an effect like a filter-sweep that synchronises to your bar boundary, then this is the parameter to use.

Here are some of the values you could use.

Note in the NME a Beat is defined as being one crotchet; you get 4 beats in a bar of 4:4 music. So, a Duration
value of 60 means one beat. A Duration value of 30 means a quaver. A Duration value of 20 means a triplet. A
Duration value of 15 means a semi-quaver. A Duration value of 240 means 4 beats (which is a full bar if the Piece
Meter is 4:4).

Phase Shift%

Use this parameter if you want to start the microcontroller from a start-point other than at the very start of its cycle.

Voice - Micro Delay

The Voice Micro Note Delay parameters provide fine variation in the times of Note events generated by a Voice.
This can be used to give a Voice more “human” feel.

Delay Range

The maximum amount of delay generated by micro note delay changes, that may be applied to note events. Zero
means off (which is the default).

Delay Change

The amount of change in the micro delay that is applied by Noatikl between note on/off events. The value drifts
between zero (off) and the Delay Range, changing by plus or minus the Delay Change value each time.

Delay Offset

Fixed amount of offset note delay to apply, used only when the Micro Note Delay controller is in use. The default
value is zero.

Voice - Micro Pitch

The Voice Micro Pitch parameters provide fine variation through use of the MIDI Pitch Wheel controller.

Tip: This is not normally used on MIDI line 10, which is the drum/percussion line!

Bend Sensitivity

A value from 0 to 24, meaning how many semitones are controlled by the full available range of Micro Pitch
parameters. The default value is 2, which represents two semitones.

Pitch Bend Offset

Fixed amount of pitch-bend to apply on this MIDI line, used to tune/de-tune an instrument.

The default value is zero, which means to apply no offset pitch bend.

From -8192 to +8191; which covers a range of pitch bend defined by the Bend Sensitivity parameter.

Pitch Range
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The maximum amount of micro pitch change that can be applied. Zero means off (which is the default). The
maximum value allowed is 8191. The value chosen is added to the pitch bend offset.

Pitch Change

The amount of change in Micro Pitch that is applied by Noatikl between “update” periods. The value drifts between
zero (off) and the Pitch Range, changing by plus or minus the Pitch Change value each time.

Pitch Update

The time in milliseconds between updates to the pitch controller. The actual value chosen is selected randomly
each time, to be a value somewhere between Pitch Update and Update Range.

Update Range

The upper limit of time between updates to the pitch controller. The actual value chosen is betwen Pitch Update
and Update Range.

Voice - Note > MIDI

Normally, Voices compose and emit MIDI note events. The Voice Note to MIDI CC Mapping parameters allow you to
tell a Voice to emit MIDI controller data instead of MIDI note events.

Why would you want to do this? Well, it lets you use a Voice as a very powerful generative MIDI event generator
with a huge range of potential applications.

CC for Note On?

If you want this Voice to emit a MIDI CC instead of note on/off events, set this parameter to Yes.

Note On CC

If you have set CC for Note On? to Yes, then instead of emitting a note on event, the Voice will emit the specified
MIDI CC, with a value equal to the composed pitch.

CC For Velocity?

If you want this Voice to emit a MIDI CC proportionate to the Velocity of the composed note (in addition to any
controller defined for Note On CC), then set this parameter to Yes.

Velocity CC

If you have set CC for Velocity? to Yes, then the Voice will (in addition to the Note On CC value) emit the specified
MIDI CC, with a value equal to the composed velocity.

CC for Note Off?

If you want this Voice to emit a MIDI CC when a note off occurs, set this parameter to Yes. This applies only if CC
for Note On? Is set to Yes.

Note On CC

If you have set CC for Note Off? to Yes, then instead of emitting a note off event, the Voice will emit the specified
MIDI CC, with a value equal to the composed pitch of the stopped note.

Voice - Envelopes
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Voice Envelopes are supported for a number of parameters. Envelopes work in the same way for all of these, so
they are all grouped here.

Each envelope is a collection of up to 100 data points. A piece starts with the value at the left side of the envelope,
and as it progresses, eventually ends up with the value from the far right of the envelope.

You can draw direct on to the envelope with your mouse.

Alternatively, you may use one of the various powerful envelope editing tools that we have made available to you.

To use the envelope editing tools: 
- Right-click (win) or ctrl-click (mac) on the envelope tool 
- Select the option you want. e.g. random, curve up etc. 
- Select the range using the mouse... 
- Then: either press space or enter, or select pop-up envelope tool to apply to the selected range. 
- Select freehand mode to return to the normal click-to-paint mode.

Velocity Envelope

This allows you to define how the Velocity level is changed automatically for your Voice throughout playback of the
piece. The velocity defines relatively how loud each note is.

The actual Velocity value used at any point in the piece is calculated as being a value somewhere in the range from
Velocity, to Velocity plus the value of the Velocity Range envelope.

Velocity Range Envelope

The value in this envelope is added to the value in the Velocity Envelope.

Velocity Change Envelope

The velocity for any composed note can change by a value between Velocity Change Envelope value (VCE) and
the VCE plus the Velocity Change Range Envelope value.

Velocity Change Range Envelope

The value in this envelope is added to the value in the Velocity Change Envelope.

User Envelope 1 (Volume)

This allows you to define an envelope that is used to emit a MIDI CC of your choice. The default value for this MIDI
CC is 7, which is the Volume controller.

MIDI CC

Use this to define the MIDI CC that you want to be emitted by this envelope. The default value is 7, which is
the Volume controller.

Enabled?

Use this to turn your envelope on or off.

Envelope

Micro User (Envelope 1)

This provides fine variation in the values generated by the User Envelope 1. Any value generated by this micro
controller is added to the Micro User Envelope 1 value, to give fine variation in any such envelope.
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Range

The maximum amount of micro change in the User Envelope 1 that can be applied. Zero means off (which is
the default).

Change

The amount of micro change in the User Envelope that is applied by Noatikl between “update” periods. The
value drifts between zero (off) and the Range, changing by plus or minus the Change value each time.

Update

The time in milliseconds between updates to the Micro User Envelope value. The actual value chosen is
selected randomly each time, to be a value somewhere between Update and Update Range.

Update Range

The upper limit of time between updates to the Micro User Envelope value. The actual value chosen is
betwen Update and Update Range.

User Envelope 2 (Pan)

This allows you to define an envelope that is used to emit a MIDI CC of your choice. The default value for this MIDI
CC is 10, which is the Pan controller.

MIDI CC

Use this to define the MIDI CC that you want to be emitted by this envelope. The default value is 10, which is
the Pan controller.

Enabled?

Use this to turn your envelope on or off.

Envelope

Piece - Basics

The Piece Basic parameters allow you to define some of the key parameters that govern your composition at the
Piece level.

Name

Always uses the text "Piece". You can't change this value.

Length Units

The duration time units for which the piece should play. The default value is Seconds, but you can set to Bars if you
so wish.

Piece Length

The minimum duration, in seconds / bars, for which to play this piece before restarting. The duration chosen is
somewhere in the range of Piece Length, to Piece Length plus Piece Length Range. If Length Units is Seconds,
then the chosen duration is rounded-up to the nearest bar boundary.

Piece Length Range
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Defines an upper range in values, for which to play this piece before restarting

Piece Rest

The minimum duration, in seconds, for which this piece will rest with silence before restarting. The duration chosen
by Noatikl is a randomly selected value in the range of Piece Rest, to Piece Rest plus Piece Rest Range. If Length
Units is Seconds, then the chosen duration is rounded-up to the nearest bar boundary.

Piece Rest Range

Defines an upper range in values, for which this piece will rest with silence before restarting.

Auto Restart?

Defines if, when the piece has reached the end and applied any rest, it should restart automatically or not. If set to
Yes, the Piece will keep playing with appropriate random variations. If set to No, the piece will simply stop playing at
the end until you tell it to Stop.

Meter

Defines the Meter to be used by this Piece, such 4:4 or 3:4 or 6:8. A Voice will generally use this Meter, but the
Meter value to be used for each Voice may actually override this setting. This approach allows Voices to be
configured to work with a completely different Meter, which can be used for interesting polyphonic effects.

Piece - Tempo

The Piece Tempo parameters allow you to define the tempo parameters for your piece.

The tempo parameters are used in these two situations:

when "cooking" a MIDI file
when "real-time" playing standalone and not synced

In all other circumstances, the Tempo parameters in this view are ignored. When not cooking a MIDI file, and when
using the Noatikl Plug-in or Noatikl standalone in Sync? mode, the tempo is provided by the sequencer, and all of
the Tempo parameters are ignored.

Name

Always uses the text "Piece". You can't change this value.

Tempo

The minimum Tempo to use for this piece, in Beats Per Minute.

The actual Tempo to use is a value between Tempo, and Tempo plus Range.

Range

A value defining the maximum tempo to use, in Beats Per Minute.

The actual Tempo used by the piece is a randomly-selected value between Tempo, and Tempo plus Range.

Change

A value that defines if the tempo should change value according to an envelope defined by Envelope. When
selected, the tempo value used for each bar is offset by the Envelope value scaled by the Envelope Range.
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Envelope

A value showing the range of envelope value changes that this piece should be follow, used if Change is set to
Yes. Use this if you want to apply a dynamic tempo envelope to your piece.

Envelope Range

A value defining what range of values are indicated by the Envelope. Defined in Beats Per minute.

Piece - Rules

The Piece Rules parameters allow you to define the default Rules used by the piece.

Name

Always uses the text "Piece". You can't change this value.

Scale Rules

Set this to define the default Scale Rule to use when the piece plays. Individual Voices are allowed to override this
setting if they so wish.

Harmony Rules

Set this to define the default Harmony Rule to use when the piece plays. Individual Voices are allowed to override
this setting if they so wish.

Next Note Rules

Set this to define the default Next Note Rule to use when the piece plays. Individual Voices are allowed to override
this setting if they so wish.

Piece - Roots

The Piece Roots parameters allow you to define some of the key parameters that govern your piece.

Name

Always uses the text "Piece". You can't change this value.

Piece Roots

The Root Pitch to use for this Piece. For example, if you are using a Major Scale Rule, then set this value to be C,
for you Piece to play in the key of C Major.

Piece - Scripts

Note: Scripts are supported ONLY in Noatikl Desktop versions (Standalone / Audio Plugins).

The Piece Scripts parameters allow you to embed small Trigger Scripts, which are small bits of code in the widely
used Lua language, that are triggered when various events happen when the piece is playing. Using trigger scripts
allows you to tell the piece to behave in very powerful ways while it is playing.

Name

Always use the text "Piece". You can't change this value.
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Start

Select to show the Start trigger script in the Script Editor Window.

The Start Trigger Script is called once at the start of the Piece, when the piece starts playing.

function nt_trigger_start()
  print ("Piece start!")
end

Bar

Select to show the Bar trigger script in the Script Editor Window.

The Bar Trigger Script is called at the start of every bar while the piece is playing.

function nt_trigger_bar(bar)
  print ("Bar number", bar)
end
  

MIDI In CC

Select to show the MIDI In CC trigger script in the Script Editor Window.

The MIDI In CC Trigger Script is called whenever a MIDI CC event is received by the MIDI Input device.

function nt_trigger_midiin_cc(channel, cc, value)
  print ("Piece MIDI In CC", channel, cc, value)
end
  

MIDI In Note

Select to show the MIDI In Note trigger script in the Script Editor Window.

The MIDI In Note Trigger Script is called whenever a MIDI Note On or Off event is received by the MIDI Input device.

function nt_trigger_midiin_note(noteon, channel, pitch, velocity)
  print ("Piece MIDI in note ", noteon, channel, pitch, velocity)
end
  

Stop

Select to show the Stop trigger script in the Script Editor Window.

The Stop Trigger Script is called once at the end of the Piece, just as the Piece stops playing.

  function nt_trigger_stop()
    print ("Piece stop!")
  end
  

See Also

Scripting Overview
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Trigger Scripts
Scripting Reference
Noatikl as a Hyperinstrument

File

The File Object allows you to define some book-keeping parameters of your file. None of these parameters affect
the way that you piece sounds.

Name

An internal value representing your File. Always a value of "File". You can't change this value.

Title

The title of your Piece.

Author

The author of your Piece.

NME Scripting

Scripts are supported ONLY in the following apps: Noatikl Desktop (Standalone / Audio Plugins).

Introduction to NME Scripting

The NME contains a powerful scripting engine which, while entirely optional to use, offers tremendous power. NME
Scripts and NME Scripting (hereafter just "scripts", scripting etc.) can be used in two separate contexts:

Trigger Scripts

The most common way to use scripting in the NME is to use the Script Editor Window accessed from the
Desktop Noatikl Voice Scripts and Piece Scripts Objects. This lets you attached to the Piece or to Voice
Objects small Trigger Scripts. These are small bits of code in the widely used Lua language. These scripts
are triggered when various events happen when a piece is playing. Using trigger scripts allows you to tell the
Voice or Piece Objects to behave in very powerful ways while the piece is playing.

Script Window

The other way to use scripting in the NME, is to use the Noatikl Script Window accessed from Desktop Noatikl
via Menu > Tools > Noatikl Script Editor. This allows you to create and run scripts written in the Lua
language, to manipulate Noatikl editor windows to, for example, dynamically create random Noatikl
compositions. This window is for commands of the syntax noatikl_Window* .

Scripts are written using the widely used Lua scripting langauge. Lua is very powerful, fast and easy to learn. Lua is
a very popular embedded scripting langage, and is widely used in the gaming and multimedia worlds. The NME
adds various nme-specific functions to the Lua language. These extensions are outlined later in this document. We
give you lots of examples to get you started. If you ever get stuck, or if you want to share your cunning scripts with
fellow NME users, then please make use of the NME scripting forum!

Note that the NME supports the Lua table, Lua string and Lua math standard Lua libraries. It does not support the
io or os libraries.

Why would you want to use Scripting?

http://www.lua.org/manual/5.1
http://www.lua.org/manual/5.1/manual.html#5.6
http://www.lua.org/manual/5.1/manual.html#5.4
http://www.lua.org/manual/5.1/manual.html#5.5
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
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Why would you want to use Scripting?

With careful use of trigger scripts, you can build a custom hyperinstrument!

You can, if you wish, create trigger scripts to run at the following times:

start of playback
every bar
when a note is composed by noatikl
end of playback
in response to MIDI CC via e.g. keyboard controller
in response to MIDI Note on/off via e.g. keyboard controller

Every script can do pretty much anything to the NME in real-time, such as manipulating music rules, playing with
mutation, and what have you.

We also have a hyperinstrument mode, and allow the Note on/off commands to control parameters and/or trigger
"Listening" Voices, that can in turn trigger off other musical events such as auto-chording events or following
voices.

The scripts are in the very widely used Lua scripting language.

A note on print

Note that the standard Lua function print may be used to display text in the Noatikl Script Window (if you happen to
have that displayed; this is very useful for debugging your scripts!

A note on Comments in Lua script

Single-line comments in Lua script start with the two minus characters:

  -- This is a comment

To comment-out a block of text in Lua, enclose the text in --[[ and ]] as in this example

  print ("Hello")
  --[[
  This is a big block
  of text that I want to comment out!
  ]]
  print ("World")

Trigger Scripts ("Triggers")

Triggers can be assigned to most Objects, including the Piece and Voice Objects.

Not all script functions are available to you within trigger scripts; specifically, the functions that open and manipulate
windows are not available from Triggers (these are reserved for use from the Noatikl Script Window). You can enter
these scripts using the following parameter groups / views:

Voice - Scripts
Piece - Scripts

There are a variety of Trigger Scripts types that you may invoke.

Start

The Start Trigger Script is called once at the start of the Piece, when the piece starts playing.
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function nt_trigger_start()
  print ("Piece start!")
end
  

Bar

The Bar Trigger Script is called at the start of every bar while the piece is playing.

function nt_trigger_bar(bar)
  print ("Bar number", bar)
end
  

Composed

The Composed Script is called when a Voice composes a note and is only available to Voice Objects. Use this to
emit MIDI CC events and what have you.

Advanced users might also be interested in reading about using this script with embedded calls to
noatikl_Trigger_EmitListeningNote, to help build hyperinstruments.

function nt_trigger_composed(noteon, channel, pitch, velocity)
  print ("Composed", noteon, channel, pitch, velocity)
end
  

MIDI In CC

The MIDI In CC Trigger Script is called whenever a MIDI CC event is received by the MIDI Input device.

function nt_trigger_midiin_cc(channel, cc, value)
  if (cc == 1)
  then
    print ("MIDI In CC", channel, cc, value)
  end
end
  

NOTE on Omni: The NME delivers all MIDI CC events to this trigger from all MIDI channels, even if this trigger is a
voice trigger script with a voice targeting a different MIDI channel. This is known as Omni behaviour. If you want
your voice trigger to respond only if the supplied MIDI CC is from the same channel as your Voice, use script like
this:
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function nt_trigger_midiin_cc(channel, cc, value)
  if (channel == noatikl_Trigger_GetMidiChannel())
  then
    -- Matches our voice channel!
    print ("MIDI In CC", channel, cc, value)

    if (cc == 1)
    then
      noatikl_Trigger_Parameter_Set("Patch", value)
    end
  end
end
  

MIDI In Note

The MIDI In Note Trigger Script is called whenever a MIDI Note On or Off event is received by the MIDI Input device.
See the hyperinstrument section for a detailed discussion.

function nt_trigger_midiin_note(noteon, channel, pitch, velocity)
  print ("note ", noteon, channel, pitch, velocity)
end
  

NOTE on Omni: The NME delivers all MIDI Note events to this trigger from all MIDI channels, even if this trigger is a
voice trigger script with a voice targeting a different MIDI channel. This is known as Omni behaviour. If you want
your voice trigger to respond only if the supplied MIDI Note is from the same channel as your Voice, use script like
this:

function nt_trigger_midiin_note(noteon, channel, pitch, velocity)
 if (channel == noatikl_Trigger_GetChannel())
  then
    print ("note ", noteon, channel, pitch, velocity)
  end
end
  

Stop

The Stop Trigger Script is called once at the end of the Piece, just as the Piece stops playing.

  function nt_trigger_stop()
    print ("Piece stop!")
  end
  

The Script Editor Window

When you decide to edit a Trigger Script parameter, you are presented with a Script Editor window.

The text panels support the usual context-sensitive text editor menus and keyboard accelerators (allowing for fast
copy and paste operations).
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The Script Editor window allows you to edit trigger scripts associated with your object.

Test

Pressing this button will compile any Lua script that you
type in the large text area at the top of the window, and
display any results in the bottom panel. Use the Test to
quickly check your script for obvious syntax errors!

Help

Pressing the Help button displays help on the NME
Scripting system!

Clear

Pressing the Clear button quickly erases the text in the
top panel.

Default

Pressing the Default button will replace any text in the top panel, with a new, empty default trigger script appropriate
to the script parameter you are currently viewing.

OK

Pressing the OK button will save your changes. These are used when the piece next starts playing.

Cancel

Pressing the Cancel button will discard your changes.

Test Results

Any test results are displayed in the Test Results area at the bottom.

Clear

Pressing the Clear button in the bottom area, quickly erases the text in the bottom panel.

Noatikl Script Window

The Noatikl Script Window is accessed from Desktop Noatikl via Menu > Tools > Noatikl Script Editor. It is used to
create and run scripts to manipulate Noatikl Editor Windows and for commands of the syntax noatikl_Window* ;
for example, to dynamically create random compositions.

It is also used for displaying messages from print calls within your trigger scripts!

The text panels support the usual context-sensitive text editor menus and keyboard accelerators (allowing for fast
copy and paste operations).

Run Command!

Pressing this button will run any Lua script that you type

Script Editor Window
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in the large text area at the top of the window, and display
any results in the bottom panel

An example you might like to try would be this:

print ("Hello world!")

History and Results

Any results are displayed in the History and Results area
at the bottom.

This is where the output from any print statements in your scripts are displayed (including those within trigger
scripts).

Help

Pressing the Help button displays help on the NME Scripting system!

Clear

Pressing the Clear button quickly erases the bottom panel.

Scripting Cookbook

Trigger Script Cookbook

A great way to start thinking about trigger scripts, is to look at various real examples of how to do various
interesting things with trigger scripts!

Example: Change the scale to use depending on time of day

This is a script that you could use as a piece-level Bar trigger script.

  function nt_trigger_start()
    -- NME script to get hour of day as 24-hour clock value
    -- ... and select scale accordingly!
    local lTime = tonumber(noatikl_GetDate("%H"))
    if ((lTime > 20) or (lTime <8))
    then
      noatikl_Trigger_Parameter_Set("Scale Rules", "early morning scale")
    else
      noatikl_Trigger_Parameter_Set("Scale Rules", "middle of day scale")
    end
  end
  

Example: randomly select a pattern to use for a voice

This is a voice-level Bar trigger script.

Noatikl Script Window
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function nt_trigger_start()
  -- Get a random integer between 1 and 3 inclusive.
  local lValue = noatikl_GetRandomFromTo (1, 3)

  print ("lValue", lValue)

  local lPattern = ""
  if (lValue == 1)
  then
    lPattern = "<100 B 240 1>"
  elseif (lValue == 2)
  then
    lPattern = "<100 B 120 1 120 2>"
  else
    lPattern = "<100 B 60 1 60 2 60 3 60 4>"
  end

  noatikl_Trigger_Parameter_Set("Patterns", lPattern)
end

Example: script trigger that allows trigger scripts to emit MIDI CC events, with an
optional delay

This is a script that you could use as a piece-level Bar trigger script.

  function nt_trigger_bar(bar)

    -- Voice trigger...
    -- Apply a pan sweep through the bar from left to right,
    -- to show-off the use of noatikl_Trigger_EmitMidiCC.

    local lDuration = noatikl_Trigger_GetBarDuration()

    local lMidiChannel = noatikl_Trigger_GetChannel()
    local lDelay = 0
    local lCC = 10 -- Pan controller!
    local lValue = 0
    while lDelay <= lDuration do
      local lValue = (127 * lDelay) / lDuration
      -- Note that the "lDelay" is optional; we're using the in this specific
      -- demo, to get a sweep effect from start to end of the bar.
      noatikl_Trigger_EmitMidiCC(lMidiChannel, lCC, lValue, lDelay)
      lDelay = lDelay + 20
    end
  end

Example: piece bar trigger, that automatically adjusts the piece root every 10 bars
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function nt_trigger_bar (bar)

  if ((bar % 10) == 0)
  then
    -- Every 10 bars, change the root at random,
    -- from all those available!
    local lRoots = {"A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#"}
    local lIndex = noatikl_GetRandomFromTo(1,12)
    local lRoot = lRoots[lIndex]
    print ("Root", lRoot)
    noatikl_Trigger_Parameter_Set("Piece Roots", lRoot) 

    -- Un-comment the following line to set tempo at random, too,
    -- to a value related to the selected root!
    -- noatikl_Trigger_Parameter_Set("Tempo", 100 + lIndex * 5) 
  end
end

Example: piece start trigger, that automatically adjusts the tempo to suit the time of
day

function nt_trigger_start()
  print("Piece!")

  -- NME script to get hour of day as 24-hour clock value
  -- ... and adjust tempo accordingly!
  local lTime = tonumber(noatikl_GetDate("%H"))
  if ((lTime > 20) or (lTime <8))
  then
    print ("late night / early morning!")
    local lRandom = noatikl_GetRandomFromTo(0,50)
    noatikl_Trigger_Parameter_Set("Tempo", 50 + lRandom)
  else
    print ("middle of day!")
    local lRandom = noatikl_GetRandomFromTo(0,50)
    noatikl_Trigger_Parameter_Set("Tempo", 100 + lRandom)
  end
end

Example: voice start trigger, that automatically cycles the patch every time it starts
playback

function nt_trigger_start()
  print("Voice!")

  local lPatch = noatikl_Trigger_Parameter_Get_AsNumber("Patch")
  lPatch = lPatch + 1
  if (lPatch > 100)
  then
    lPatch = 0
  end
  noatikl_Trigger_Parameter_Set("Patch", lPatch)
end

Example: voice trigger, that automatically changes patch every bar
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function nt_trigger_bar(bar)
  print("Voice1 ", bar)
  local lPatch = noatikl_Trigger_Parameter_Get_AsNumber("Patch")
  lPatch = lPatch + 1
  if (lPatch > 100)
  then
    lPatch = 0
  end
  noatikl_Trigger_Parameter_Set("Patch", lPatch)
end

Example: bringing voices into the piece

In this example, imagine that you have a mutating drum Voice that you want to have muted at the start of the piece
and come in with a bang at the start of bar 20. And you don't want the mutations to start until bar 21...

How would that work in the world of script?

Here is the Voice Start trigger:

function nt_trigger_start()
  -- When we start, disable mutation for this Voice!
  -- And set mute, too!
  noatikl_Trigger_Parameter_Set("Mute", "Yes")
  noatikl_Trigger_Parameter_Set("Mutation Factor", 0)
end

Here is the Voice Bar trigger:

function nt_trigger_bar(bar)
  if (bar == 20)
  then
    -- At bar 20, unmute the voice!
    noatikl_Trigger_Parameter_Set("Mute", "No")
  end

  if (bar == 21)
  then
    -- At bar 21, adjust the mutation factor!
    noatikl_Trigger_Parameter_Set("Mutation Factor", 20)
  end
end 

The power of using scripts like this, is that:

The drums alway start on the bar specified.
They don't morph until they are audible.
The drum elements can now make staggered entry despite all being on the same MIDI channel.

Example: Emit MIDI CC in response to composed note events
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function nt_trigger_composed(noteon, channel, pitch, velocity)
  -- Keep track of last composed note using the global (for this voice)
  -- called GLastNote ...
  -- Note that the "pitch" parameter should be ignored when noteon is false.

  lMidiChannel = noatikl_Trigger_GetChannel()

  if (noteon)
  then
    if (GLastNote ~= nil)
    then
      noatikl_Trigger_EmitMidiCC(lMidiChannel, 11, GLastNote, 10)
    end

    GLastNote=pitch
    noatikl_Trigger_EmitMidiCC(lMidiChannel, 11, pitch, 0)
  else
    if (GLastNote ~= nil)
    then
      noatikl_Trigger_EmitMidiCC(lMidiChannel, 11, GLastNote, 10)
      GLastNote = nil
    end
  end
end

Noatikl Script Window Cookbook

A great way to start thinking about scripting in the Noatikl Script Window is to look at an example.

Example: the simplest possible start

print ("Hello world")

Example: open all Noatikl files in a sub-folder with a .txt extension, adjust some
parameters and re-save with .noatikl file extension.
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local lFileList = noatikl_FindFilePaths("myfolder1", "myfolder2")

local index = 0
while true do

  index = index + 1
  local lFilePath = lFileList[index];
  if (lFilePath == nil)
  then
    break
  end

  if (string.find(lFilePath, '.txt'))
  then
    local lWindow = noatikl_Window_OpenPath(lFilePath)

    -- Change some file parameters
    noatikl_Window_Object_Parameter_Set(lWindow, "File", 1, "Author", "my company")
    noatikl_Window_Object_Parameter_Set(lWindow, "File", 1, "Midi Output Device", "?")
    noatikl_Window_Object_Parameter_Set(lWindow, "File", 1, "Midi Input Device", "?")
    noatikl_Window_Object_Parameter_Set(lWindow, "File", 1, "Midi Sync?", "No")

    -- Change some parameters for every voice in the file...    
    local lCount = noatikl_Window_Object_GetCount(lWindow, 'Voice')
    
    local lIndex = 1
    while lIndex <= lCount do
    
      noatikl_Window_Object_Parameter_Set(lWindow, "Voice", lIndex, "Copyright", "Copyri
ght my company")
    
      lIndex = lIndex + 1
    end

    local lSaveToPath = string.gsub(lFilePath, '.txt', '.noatikl')

    noatikl_Window_SaveToPath(lWindow, lSaveToPath)

    print ("Saved", lFilePath)

    noatikl_Window_Close(lWindow)
  end
end

print ('Done!')

Hyperinstrument

Scripts are supported ONLY in Noatikl Desktop versions (Standalone / Audio Plugins).

You might also want to refer to the scripting overview and the scripting reference.

What is a hyperinstrument?

A hyperinstrument can be defined as being an instrument that can have extraordinary, semi-automated response to
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relatively simple real-time inputs.

The NME can function as a hyperinstrument for 2 main reasons: The NME can real-time harmonise with incoming
MIDI note events and control events (otherwise known as "MIDI CCs"), and the NME's generative engine is an
instrument that creates more than the sum of your direct inputs with keyboard, mouse, and MIDI. In other words, the
NME's generative engine, MIDI control, scripting and direct MIDI input harmonisation all work together to make itself
greater than the sum of its parts; a customisable generative hyperinstrument!

See the Hyperinstrument - Quick Start if you want to get started quickly.

How does the NME work as a hyperinstrument?

You can respond to any incoming MIDI CC however you want; for example, to change the current scale or adjust a
harmony rule in real-time in response to incoming MIDI CC events.

You can also respond to any incoming MIDI Note on/off event however you want; for example, you could use some
notes (such as accidentals in a scale) to change parameter values, and pass-through the others to the NME. In
other words, you can use certain specific notes to trigger various complex responses by the NME, for example; or to
enable/disable the chording parameters only for certain notes (immediately that a note is triggered!); or to 'fix'
"invalid" notes; or to change scale; or pretty much whatever you can imagine.

All note on/off events received by the NME via the MIDI input device (or plug-in input) are normally passed through
automatically to the destination MIDI output device (or plug-in output); with the exception that where you have a
Listening voice with a Note On trigger script, the note on/off events for that voice's MIDI channel are not
immediately passed-through by noatikl; in this case, the only way to get them out is via a call to
noatikl_Trigger_EmitListeningNote within the nt_trigger_midiin_note trigger script for a voice. Note that the
noatikl_Trigger_EmitListeningNote will work only if your voices is a Listening voice, and if Listen? is ticked in the
Noatikl Desktop Control panel.

To re-iterate, for lines that are not being listened to with a voice that has a Note Trigger Script: the any note on/off
events effectively bypass the NME and are passed-on with minimum latency (though the NME does harmonize
against them). On lines that are marked as listening voice type, and where there is a note trigger script with
embedded, then you'd need to have a call to this function within that script:

  noatikl_Trigger_EmitListeningNote(noteon, pitch, velocity)
  

which results in note on/off events on that line being sent via noatikl's internal composition engine.

Here is real, working example of a Voice MIDI In Note trigger script that you could use in your own piece. Note that
the call to noatikl_Trigger_EmitListeningNote will have an effect only if the voice is a Listening Voice:

  function nt_trigger_midiin_note(noteon, channel, pitch, velocity)
    if (channel == noatikl_Trigger_GetChannel())
    then
      -- Simply pass-through all notes to the Listening Voice.
      -- If we wanted to, we could respond to certain pitches to do different
      -- things!
      noatikl_Trigger_EmitListeningNote(noteon, pitch, velocity)
    end
  end
  

When you call this function, this causes the note to be emitted as though the Listening Voice were "following" that

https://intermorphic.com/noatikl/guide/#noatikl-desktop
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note in accordance with the "Following Voice" parameters. So, if you want the exact note to be passed through,
then using the follows strategy of semitone shift and set the offset to be zero.

The note emitted by the NME after it applys the "following" rules, is auto-chorded (if you have this set-up); and any
Voice that you have configured to follow this Listening Voice, will follow that note.

The above comments apply if you play into the Listening Voice with a monophonic feed. If you're supplying a
polyphonic feed, then slightly more complex rules apply. In this case, only the first note in any ongoing chord from
the controller is treated with the Following Voice parameters; all other notes active in any chord are harmonised
with, and passed out directly to the MIDI stream. So as you play solo/chords on your controller, the system caters
for that polyphony in a good way; the first active note in the chord is processed by the NME (and auto-chorded or
followed as required), and all other notes in the chord are passed straight through with minimal latency (and are, of
course, harmonized with by the NME).

Note: we recommend use of noatikl_Trigger_EmitListeningNote with the Noatikl Desktop Standalone: some
sequencer hosts can too much latency to make this mode effective with the plug-in (Reaper is effective!). And note,
that if using this mode with the plug-in, it is likely to work best when getting input from a MIDI port or direct from the
device, and outputting data to a port (e.g. MIDI Yoke or IAC port). If you find otherwise, please let us know.

Note that the MIDI input could come from MIDI backing track, in sequencer, instead of course; depending on what
routing options are available to you in your host sequencer.

Quick Start - Listening voices / Hyperinstrument

Note: Example requires Noatikl Desktop 2.5+

To have a Vvoice  "listen" to incoming MIDI data, you need to follow the instructions below.

1. Set "MIDI Input" to be your MIDI input device.
2. Ensure that "Listen?" (in the top Control Bar) is ticked.
3. Set the voice you want to listen to MIDI input, such that:

the Voice Type is Listen
the MIDI In Script is something like this:

function nt_trigger_midiin_note(noteon, channel, pitch, velocity)
 print ("voice midiin!")
 if (channel == noatikl_Trigger_GetChannel())
 then
   -- Simply pass-through all notes to the Listening Voice.
   -- If we wanted to, we could respond to certain pitches to do different
   -- things!
   noatikl_Trigger_EmitListeningNote(noteon, pitch, velocity)
 end
end

Note: in and of itself, that will NOT make any notes in response to incoming MIDI events (we'll add that later!).
All it does for now, is tell the NME where to listen, and as notes come in, information is written to the Noatikl
Script window.

Example (configured to use Network Session on Mac as MIDI input): Click here for noatikl file

4. If you want your LISTENING Voice to make sounds itself; you must set it to auto-chord with depth of 2 or
greater; the Voice itself (which is at chord depth 1) represents the incoming MIDI event, and doesn't make
any sounds; the auto-chording notes (if you use them!) *do* make sounds.

https://intermorphic.com/images/app/noatikl/3/resources/hyperinstrument1.noatikl
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Example (configured to use Network Session on Mac as MIDI input): Click here for noatikl file

5. If you want an DIFFERENT Voice to make sounds in response to your incoming MIDI note event, set it to
FOLLOW the Listening Voice.

Example (configured to use Network Session on Mac as MIDI input): Click here for noatikl file.

6. You can combine techniques 5 and 6, if you want.

Example (configured to use Network Session on Mac as MIDI input): Click here for noatikl file

See Also

Piece - Scripts
Voice - Scripts
Scripting Overview
Trigger Scripts
Scripting Reference

Scripting Objects

Objects and Parameters

The following table lists the various Objects and their associated parameters together with how those
objects/parameters are available to NME scripts, showing: the object name; the parameter group / view (where
shown to a user); the displayed name (where shown to a user); the parameter name (as supplied to functions and
which is always unique for a given object); and the range of legal values that you may supply.

Object: "Voice"
Parameter Group /
View

Displayed Name Script Parameter Name Notes

Voice - Basics Name "Voice"  
 Mute "Mute" Yes or No
 Patch "Patch"  
 Use Patch? "Use Patch?" Yes or No
 MIDI Channel "MIDI Channel" Value in range 0, 16
 Voice Type "Voice Type"  
 Pitch "Pitch"  
 Pitch Range "Pitch Range" Value in range 11, 127

 Phrase Length "Phrase Length"
Value in range 1, 256; also in Voice -
Ambient

 Phrase Length Range "Phrase Length Range"
Value in range 0, 256; also in Voice -
Ambient

 Phrase Gaps "Phrase Gaps"
Value in range 0, 256; also in Voice -
Ambient

 Phrase Gaps Range "Phrase Gaps Range"
Value in range 0, 256; also in Voice -
Ambient

 Note Rest % "Phrase Note Rest %"
Value in range 0, 100; also in Voice -
Ambient

Voice - Ambient Units "Ambient Units"  
 Duration "Ambient Duration" Value in range 0, 32000
 Duration Range "Ambient Duration Range" Value in range 0, 32000
 Gap Minimum "Ambient Gap Min" Value in range 0, 32000
 Gap Range "Ambient Gap Range" Value in range 0, 32000

https://intermorphic.com/images/app/noatikl/3/resources/hyperinstrument6.noatikl
https://intermorphic.com/images/app/noatikl/3/resources/hyperinstrument5.noatikl
https://intermorphic.com/images/app/noatikl/3/resources/hyperinstrument4.noatikl
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Voice - Following Follow Voice "Follow Named Voice"  
 Percent "Follow Percent" Value in range 0, 100
 Strategy "Follow Strategy"  
 Units "Follow Delay Unit"  
 Delay "Follow Delay" Value in range 0, 32000
 Delay Range "Follow Delay Range" Value in range 0, 32000
 Shift/Interval "Follow Shift/Interval" Value in range -60, +60
 S/I Range "Follow Shift/Interval Range" Value in range -60, +60
Voice - Repeat Voice "Repeat Specific Voice"  
 Percent "Repeat Bars Percent" Value in range 0, 100
 Bars "Repeat For Bars" Value in range 1, 100
 History Range "Repeat Bar History Range" Value in range 0, 100
 History "Repeat Bar History" Value in range 1, 100
 Bars Range "Repeat For Bars Range" Value in range 0, 100
Voice - Patterns Patterns "Patterns"  
 Use Percent "Patterns Use Percent" Value in range 0, 100
 Mutation Factor "Mutation factor"  
 Bars Between "Mutate No. Bars" Value in range 0, 100
 Bars Range "Mutate No. Bars Range" Value in range 0, 100
 Mutate Rhythm? "Mutation of Rhythm" Yes or No
 Meter "Meter"  
Voice - Chords Depth "Chord Depth" Value in range 1, 32
 Pitch Offset "Chord Pitch Offset" Value in range -60, +60
 Delay "Chord Delay" Value in range 0, 32000
 Depth % "Chord Depth Percent" Value in range 0, 100
 Delay Unit "Chord Delay Unit"  
 Velocity Factor "Chord Velocity Factor" Value in range -100, +100
 Delay Range "Chord Delay Range" Value in range 0, 32000
 Depth Range "Chord Depth Range" Value in range 0, 32
 Strategy "Chord Strategy"  
 Shift/Interval "Chord Shift/Interval" Value in range -60, +60
 S/I Range "Chord Shift/Interval Range" Value in range -60, +60
Voice - Rules Harmony Rules "Harmony Rules"  
 Next Note Rules "Next Note Rules"  
 Rhythm Rules "Rhythm Rules"  
 Scale Rules "Scale Rules"  
 Harmonize? "Harmonize?" Yes or No
 Voice Root "Voice Root"  
Voice - Scripts Start "Script_Start"  
 Bar "Script_Bar"  
 Composed "Script_Composed"  
 MIDI In CC "Script_MidiIn_CC"  
 MIDI In Note "Script_MidiIn_Note"  
 Stop "Script_Stop"  
Voice - Comments Copyright "Copyright"  
 Notes "Notes"  
Voice - Controllers Damper/Hold (64) "Damper/Hold (64)" Value in range -1, 127
 Harmonic Content (71) "Harmonic Content (71)" Value in range -1, 127
 Reverb (91) "Reverb (91)" Value in range -1, 127
 Chorus (93) "Chorus (93)" Value in range -1, 127
 Damper Release "Damper Release" Yes or No
 Portamento (84) "Portamento (65)" Value in range -1, 127
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 MIDI Channel Sharing "MIDI Channel Reallocation" Yes or No
Voice - Micro
Controller 1

MIDI CC "User Controller 1 Midi Command"  

 Mode "User Controller 1 Mode"  
 Minimum "User Controller 1 Minimum" Value in range 0, 127
 Range "User Controller 1 Range" Value in range 0, 127
 Change "User Controller 1 Change" Value in range 0, 127
 Change Range "User Controller 1 Change Range" Value in range 0, 127
 Update "User Controller 1 Update" Value in range 0, 10000
 Update Range "User Controller 1 Update Range" Value in range 0, 10000
 Update Units "User Controller 1 Update Unit"  
 Beat Cycle Length "User Controller 1 Beat Cycle Length" Value in range 0, 32000
 Phase Shift% "User Controller 1 Phase Shift" Value in range 0, 100
Voice - Micro
Controller 2

MIDI CC "User Controller 2 Midi Command"  

 Mode "User Controller 2 Mode"  
 Minimum "User Controller 2 Minimum" Value in range 0, 127
 Range "User Controller 2 Range" Value in range 0, 127
 Change "User Controller 2 Change" Value in range 0, 127
 Change Range "User Controller 2 Change Range" Value in range 0, 127
 Update "User Controller 2 Update" Value in range 0, 10000
 Update Range "User Controller 2 Update Range" Value in range 0, 10000
 Beat Cycle Length "User Controller 2 Beat Cycle Length" Value in range 0, 32000
 Update Units "User Controller 2 Update Unit"  
 Phase Shift% "User Controller 2 Phase Shift" Value in range 0, 100
Voice - Micro Note
Delay

Delay Range "Micro Note Delay Range" Value in range 0, 1000

 Delay Change "Micro Note Delay Change" Value in range 0, 1000
 Delay Offset "Micro Note Delay Offset" Value in range -1000, +1000
Voice - Micro Pitch Bend Sensitivity "Pitch Bend Sensitivity" Value in range 0, 24
 Pitch Bend Offset "Pitch Bend Offset" Value in range -8192, +8191
 Pitch Range "Micro Pitch Range" Value in range 0, 8191
 Pitch Change "Micro Pitch Change" Value in range 0, 1000
 Pitch Update "Micro Pitch Update" Value in range 0, 10000
 Update Range "Micro Pitch Update Range" Value in range 0, 10000
Voice - Micro User
Envelope

Range "Micro Volume Range" Value in range 0, 127

 Change "Micro Volume Change" Value in range 0, 127
 Update "Micro Volume Update" Value in range 0, 1000
 Update Range "Micro Volume Update Range" Value in range 0, 10000
Voice - Note to MIDI
CC Mapping

CC for Note On? "MIDI CC instead of Note?" Yes or No

 Note On CC "MIDI CC Note On Value"  
 CC for Velocity? "MIDI CC for Note On Velocity?" Yes or No
 Velocity CC "MIDI CC Note On Velocity"  
 CC for Off? "MIDI CC for Note Off?" Yes or No
 Note Off CC "MIDI CC Note Off Value"  
Voice - User
Envelope 1 (Volume)

MIDI CC "User Envelope 1 MIDI CC"  

 Enabled? "User Envelope 1 Enabled" Yes or No
 Envelope "Volume"  
Voice - User
Envelope 2 (Pan)

MIDI CC "User Envelope 2 MIDI CC"  
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 Enabled? "User Envelope 2 Enabled" Yes or No
 Envelope "Pan (10)"  
Voice - Envelope -
Velocity

Velocity "Velocity"  

Voice - Envelope -
Velocity Range

Velocity Range "Velocity Range"  

Voice - Envelope -
Velocity Change

Velocity Change "Velocity Change"  

Voice - Envelope -
Velocity Change
Range

Velocity Change Range "Velocity Change Range"  

Object: "Scale Rule"
Parameter Group / View Displayed Name Script Parameter Name Notes
Scale Rule Value "Value"  

Object: "Harmony Rule"
Parameter Group / View Displayed Name Script Parameter Name Notes
Harmony Rule Value "Value"  

Object: "Rhythm Rule"
Parameter Group / View Displayed Name Script Parameter Name Notes
Rhythm Rule Value "Value"  

Object: "Next Note Rule"
Parameter Group / View Displayed Name Script Parameter Name Notes
Next Note Rule Value "Value"  

Object: "Piece"
Parameter Group / View Displayed Name Script Parameter Name Notes
Piece - Basics Piece Length "Piece Length" Value in range 1, 32000
 Piece Length Range "Piece Length Range" Value in range 0, 32000
 Piece Rest "Piece Gap" Value in range 0, 10
 Piece Rest Range "Piece Gap Range" Value in range 0, 20
 Auto Restart? "Piece Auto Restart" Yes or No
 Meter "Meter"  
Piece - Tempo Tempo "Tempo" Value in range 1, 400
 Range "Tempo Range" Value in range 0, 400
 Change? "Tempo Change" Yes or No
 Envelope "Tempo Envelope"  
 Envelope Range "Tempo Envelope Range" Value in range 0, 400
Piece - Rules Scale Rules "Scale Rules"  
 Harmony Rules "Harmony Rules"  
 Next Note Rules "Next Note Rules"  
Piece - Roots Piece Roots "Piece Roots"  
Piece - Scripts Start "Script_Start"  
 Bar "Script_Bar"  
 MIDI In CC "Script_MidiIn_CC"  
 MIDI In Note "Script_MidiIn_Note"  
 Stop "Script_Stop"  

Object: "File"
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Parameter Group / View Displayed Name Script Parameter Name Notes
File Title "Title"  
 Author "Author"  
 Midi Output Device "Midi Output Device"  
 Midi Input Device "Midi Input Device"  
 Midi Sync? "Midi Sync?" Yes or No
 Notes "Notes"  

See Also

Scripting Overview
Trigger Scripts
Noatikl as a Hyperinstrument

Scripting Reference

The NME contains many powerful scripting features. This page lists all the available functions, objects, and
parameters.

Note that the NME supports the Lua table, Lua string and Lua math standard Lua libraries. It does not support the
io or os libraries.

A note on print

App: Noatikl Desktop - Note that the standard Lua function print may be used to display text in the Noatikl Script
Window (if you happen to have that displayed; this is very useful for debugging your scripts!

The following functions can be used from any script.

noatikl_GetRandom ()

This function returns a random integer.

Example:

local lValue = noatikl_GetRandom ()

noatikl_GetRandomFromTo (minimum, maximum)

This function returns a random integer in the range of the two supplied values.

The function has two arguments:

minimum   the minimum value that can be returned
maximum   the maximum value that can be returned

Example:

http://www.lua.org/manual/5.1
http://www.lua.org/manual/5.1/manual.html#5.6
http://www.lua.org/manual/5.1/manual.html#5.4
http://www.lua.org/manual/5.1/manual.html#5.5
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  -- Get a random integer between 0 and 50 inclusive.
  local lValue = noatikl_GetRandomFromTo (0, 50)

noatikl_GetTime ([table])

Returns the current time. It works the same way as the the Lua os.time  function.

noatikl_GetDate ([format [, time])

Returns the current date. It works the same way as the the Lua os.date  function.

Example:

  -- NME script to get hour of day as 24-hour clock value
  -- ... and adjust tempo accordingly!
  local lTime = tonumber(noatikl_GetDate("%H"))
  if ((lTime > 20) or (lTime < 8))
  then
    print ("late night / early morning!")
    local lRandom = noatikl_GetRandomFromTo(0,50)
    noatikl_Trigger_Parameter_Set("Tempo", 50 + lRandom)
  else
    print ("middle of day!")
    local lRandom = noatikl_GetRandomFromTo(0,50)
    noatikl_Trigger_Parameter_Set("Tempo", 100 + lRandom)
  end 

The following functions can only be used from any trigger script

noatikl_Trigger_Parameter_Set (parameter_name, newvalue)

This function is used to set the object's parameter to the supplied value, for the object within whose trigger script
you place this call.

The function has two arguments:

parameter_name   the name of the parameter for which you want to set the value.
newvalue   the new value to use.

Example:

http://www.lua.org/manual/5.1/manual.html#pdf-os.date
http://www.lua.org/manual/5.1/manual.html#pdf-os.time
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function nt_trigger_start()
  -- Set the current patch (assuming we make this call from within a
  -- Voice's trigger script!)
  local lPatch = 20
  noatikl_Trigger_Parameter_Set("Patch", lPatch)
end

noatikl_Trigger_Parameter_Get (parameter_name)

This function returns the value of the named parameter, for the object within whose trigger script you place this call.
Note that the value returned is always a string, which you can convert to a number using tonumber().

The function has one argument:

parameter_name   the name of the parameter for which you want to determine the current value.

Example:

function nt_trigger_start()
  -- Get the current patch (assuming we make this call from within a
  -- Voice's trigger script!)
  local lPatch = noatikl_Trigger_Parameter_Get("Patch")
  print("Patch", lPatch)
end

noatikl_Trigger_Parameter_Get_AsNumber (parameter_name)

This function returns the value of the named parameter, for the object within whose trigger script you place this call.
Note that the value returned is always a number, so you should use this call only when you know that the parameter
in question can be treated as a number.

The function has one argument:

parameter_name   the name of the parameter for which you want to determine the current value.

Example:

function nt_trigger_start()
  -- Get the current patch as a number (assuming we make this call from within a
  -- Voice's trigger script!)
  local lPatch = noatikl_Trigger_Parameter_GetAsNumber("Patch")
  print("Patch", lPatch)
end

noatikl_Trigger_GetChannel()



53/70

This function returns the MIDI channel (assuming the script is called from within a voice script!). The value returned
is a value between 1 and 16.

Example:

function nt_trigger_start()
  local lChannel = noatikl_Trigger_GetChannel ()
  print ("Channal", lChannel)
end

noatikl_Trigger_GetRuleElement (object_type, object_name, element_index)

This function returns the rule element value of the specified index, for the named object. The value returned is a
value between 0 and 127.

The function has the following arguments:

object_type   the object type (e.g. Scale Rule).
object_name   the name of the object (e.g. Major).
element_index   the index of the element; starting at zero for the initial element.

Example 1:

function nt_trigger_start()
  -- Dump out the scale rule element values, for the major scale.
  local lIndex = 0
  while (lIndex < 12)
  do
    local lValue = noatikl_Trigger_GetRuleElement ("Scale Rule", "Major", lIndex)
    print ("lValue", lValue)
    lIndex = lIndex + 1
  end
end

Example 2:
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function nt_trigger_start()
  local lCount = noatikl_Trigger_Object_GetCount(l'Scale Rule')
  print ('Scale Rule objects=', lCount)
  
  local lIndex = 1
  while (lIndex <= lCount)
  do
    -- Dump out the scale rule element values, for the scale!
    local lName = noatikl_Trigger_Object_GetName('Scale Rule', lIndex)
    print ('Scale', lName)
    
    local lItemIndex = 0
    while (lItemIndex < 12)
    do
      local lValue = noatikl_Trigger_GetRuleElement ("Scale Rule", lName, lItemIndex)
      print ("lItemIndex", lItemIndex, "lValue", lValue)
      lItemIndex = lItemIndex + 1
    end
  
    lIndex = lIndex + 1
  end
end

noatikl_Trigger_EmitListeningNote(noteon, pitch, velocity)

This function emits the specified note via the current voice; the function is allowed only within a
nt_trigger_midiin_note trigger script. See the hyperinstrument guide for a detailed discussion. Note that this
function will have an effect only if will work only if your Voice is a Listening Voice, and if Listen? is ticked in the
Noatikl Desktop Control panel.

The function has the following arguments:

noteon   true for a note on event, false for a note off event.
channel   the MIDI channel to use; from 1 to 16.
pitch   the MIDI pitch to use; from 0 to 127.
velocity   the MIDI velocity to use, from 0 to 127.

Example:

function nt_trigger_midiin_note(noteon, channel, pitch, velocity)
  if (channel == noatikl_Trigger_GetChannel())
  then
    noatikl_Trigger_EmitListeningNote(noteon, pitch, velocity)
  end
end

noatikl_Trigger_EmitMidiCC (channel, cc, value [, delay])

This function emits the specified MIDI CC event.

https://intermorphic.com/noatikl/guide/#noatikl-desktop
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The function has the following arguments:

channel   the MIDI channel to use; from 1 to 16.
cc   the MIDI CC to use; from 0 to 127.
value   the controller value to use, from 0 to 127.
delay   an optional delay to use, from 0 up, defaulting to 0; in NME pattern time units (where 60 represents
one crotchet or quarter note). The delay is relative to the current NME timebase relevant to the trigger script
in question.

Example:

function nt_trigger_bar(bar)
  -- Voice trigger...
  -- Apply a pan sweep through the bar from left to right,
  -- to show-off the use of noatikl_Trigger_EmitMidiCC.

  local lDuration = noatikl_Trigger_GetBarDuration()

  local lMidiChannel = noatikl_Trigger_GetChannel()
  local lDelay = 0
  local lCC = 10 -- Pan controller!
  local lValue = 0
  while lDelay <= lDuration do
    local lValue = (127 * lDelay) / lDuration
    -- Note that the "lDelay" is optional; we use this in this specific
    -- demo, to get a sweep effect from start to end of the bar.
    noatikl_Trigger_EmitMidiCC(lMidiChannel, lCC, lValue, lDelay)
    lDelay = lDelay + 20
  end
end

noatikl_Trigger_GetBarDuration ()

This function returns the duration of the piece bar, in NME pattern time units; where 240 represents four crotchets
or one whole note or a bar of 4:4 time.

Example:

function nt_trigger_start()
  local lDuration = noatikl_Trigger_GetBarDuration()
  print ("lDuration", lDuration)
end

noatikl_Trigger_Object_GetCount (object)

Returns the number of objects of the specified type, in the current Noatikl file.

The function has the following arguments:
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object   the object of interest.

Example:

function nt_trigger_start()
  lCount = noatikl_Trigger_Object_GetCount('Voice')
  print ('Voice objects=', lCount)
end

noatikl_Trigger_Object_GetName (object_type, object_index)

Returns the name of the specified object.

The function has the following arguments:

object_type   the type of the object of interest.
object_index   the index of the object of interest.

Example:

function nt_trigger_start()
  local lCount = noatikl_Trigger_Object_GetCount('Voice')
  print ('Voice objects=', lCount)
  local lIndex
  while (lIndex <= lCount)
  do
    print (noatikl_Trigger_Object_GetName('Voice', lIndex)
    lIndex = lIndex + 1
  end
end

noatikl_Trigger_Object_Parameter_Get (object_type, object_index, parameter_name)

Returns the value of the parameter, for the specified object index of the specified object type, in the playing piece.

The function has the following arguments:

object_type   the type object of interest.
object_index   the index of the object of interest.
parameter_name   the parameter of interest.

Example:

function nt_trigger_start()
  local lVal = noatikl_Trigger_Object_Parameter_Get("File", 1, "Author")
  print ('Author=', lVal)
end
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noatikl_Trigger_Object_Parameter_Set (object_type, object_index, parameter_name, newvalu
e)

Sets the parameter to the the supplied value, for the specified object index of the specified object type, in the
playing piece.

The function has the following arguments:

object_type   the type object of interest.
object_index   the index of the object of interest.
parameter_name   the parameter of interest.
newvalue   the new value to use.

Example:

function nt_trigger_start()
  noatikl_Trigger_Object_Parameter_Set("File", 1, "Author", "John Smith")
end

noatikl_Trigger_SetRuleElement (object_type, object_name, element_index, newvalue)

This function set the rule element value of the specified index, for the named object, to the specified value. The
value must be between 0 and 127.

The function has the following arguments:

object_type   the object type (e.g. Scale Rule).
object_name   the name of the object (e.g. Major).
element_index   the index of the element; starting at zero for the initial element.
newvalue   the new element value to use, in a range from 0 to 127.

Example 1:

function nt_trigger_start()
  -- Set the scale rule element values, to odd settings (!), for the major scale.
  local lIndex = 0
  while (lIndex < 12)
  do
    noatikl_Trigger_SetRuleElement ("Scale Rule", "Major", lIndex, (lIndex * 127) / 12)
    lIndex = lIndex + 1
  end
end

Example 2:
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function nt_trigger_start()
  local lCount = noatikl_Trigger_Object_GetCount('Scale Rule')
  print ('Scale Rule objects=', lCount)
  
  local lIndex = 1
  while (lIndex <= lCount)
  do
    -- Set the scale rule element values, for the scale, to stupid values!
    local lName = noatikl_Trigger_Object_GetName('Scale Rule', lIndex)
    print ('Scale', lName)
    
    local lItemIndex = 0
    while (lItemIndex < 12)
    do
      local lValue = (lItemIndex * 127) / 12
      noatikl_Trigger_SetRuleElement ("Scale Rule", lName, lItemIndex, lValue)
      lItemIndex = lItemIndex + 1
    end
  
    lIndex = lIndex + 1
  end
end

noatikl_Trigger_GetEnvelopePercent (object_type, object_name, par_name, percent)

This function returns the percent value for the specified envelope at the given percent position. The value returned
is a value between 0 and 127.

The function has the following arguments:

object_type   the object type (e.g. Scale Rule).
object_name   the name of the object (e.g. Major).
par_name   the name of the envelope parameter (e.g. Volume).
percent   the percent value; from 0 to 100.

Example:
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function nt_trigger_start()
  local lCount = noatikl_Trigger_Object_GetCount('Voice')
  print ('Voice objects=', lCount)
  
  local lIndex = 1
  while (lIndex <= lCount)
  do
    -- Dump out the voice volumes envelopes!
    local lName = noatikl_Trigger_Object_GetName('Voice', lIndex)
    print ('Voice', lName)
    
    local lPercent = 0
    while (lPercent <= 100)
    do
      local lValue = noatikl_Trigger_GetEnvelopePercent ("Voice", lName, "Volume", lPerc
ent)
      print ("Volume percent", lPercent, "value", lValue)
      lPercent = lPercent + 1
    end
  
    lIndex = lIndex + 1
  end
end

noatikl_Trigger_SetEnvelopePercent (object_type, object_name, par_name, percent, newvalu
e)

This function sets the envelope value at the specified percent, for the named object, to the specified value. The
value must be between 0 and 127.

The function has the following arguments:

object_type   the object type (e.g. Scale Rule).
object_name   the name of the object (e.g. Major).
par_name   the name of the envelope parameter (e.g. Volume).
percent   the percent value; from 0 to 100.
newvalue   the new element value to use, in a range from 0 to 127.

Example:
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function nt_trigger_start()
  local lCount = noatikl_Trigger_Object_GetCount('Voice')
  print ('Voice objects=', lCount)
  
  local lIndex = 1
  while (lIndex <= lCount)
  do
    -- Ramp-up every voice volume envelope!
    local lName = noatikl_Trigger_Object_GetName('Voice', lIndex)
    print ('Voice', lName)
    
    local lPercent = 0
    while (lPercent <= 100)
    do
      local lValue = (lPercent * 127) / 100
      noatikl_Trigger_SetEnvelopePercent ("Voice", lName, "Volume", lPercent, lValue)
      lPercent = lPercent + 1
    end
  
    lIndex = lIndex + 1
  end
end

The following functions can only be used from the Noatikl Desktop Noatikl Script
Window.

noatikl_Window_New ()

Creates a new piece; the user is first prompted with the template selection dialog. Returns a file handle that you
must use in other related function calls; returns 0 in the case of an error.

Example:

  -- Create a new piece Window, and keep it open!
  local lWindow = noatikl_Window_New()

noatikl_Window_OpenPath ([filepath])

Opens the piece from the specified path. Returns a file handle that you must use in other related function calls;
returns 0 in the case of an error.

The function has the following arguments:

filepath   the path of the piece to open. If this argument is not supplied, the user is first presented with a file
browser to select a piece to open.

Example:

https://intermorphic.com/noatikl/guide/#noatikl_script_window
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  -- Open a piece Window, and keep it open!
  local lWindow = noatikl_Window_OpenPath("/myfolder/myfile.noatikl")

noatikl_Window_Close (window)

Closes the Noatikl piece window returned by an earlier call to noatikl_Window_Open.

The function has the following arguments:

window   the window handle of the piece to be closed.

Example:

  -- Open a piece Window
  local lWindow = noatikl_Window_OpenPath("/myfolder/myfile.noatikl")
  -- and immediately close it!
  noatikl_Window_Close(lWindow)

noatikl_Window_GetCount (window)

Returns the number of currently open Noatikl piece windows.

Example:

local lCount = noatikl_Window_GetCount()
print ("lCount", lCount)

noatikl_Window_GetWindow (index)

Returns the window handle for the specified window index; returns 0 if no window exists for that index.

The function has the following arguments:

index   the index of the window for which the handle is being queried.

Example:
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local lCount = noatikl_Window_GetCount()
print ("lCount", lCount)

local lIndex = 1
while (lIndex <= lCount)
do
  local lWindow = noatikl_Window_GetWindow(lIndex)
  print (lWindow)
  local lPath = noatikl_Window_GetPath(lWindow)
  print (lPath)
  lIndex = lIndex + 1
end

noatikl_Window_GetPath (window)

Returns the file path used by the window in question.

The function has the following arguments:

window   the window handle of the piece being queried.

Example:

-- Run through all open Noatikl piece windows,
-- and print out the file paths.
local lCount = noatikl_Window_GetCount()

local lIndex = 1
while (lIndex <= lCount)
do
  local lWindow = noatikl_Window_GetWindow(lIndex)
  local lPath = noatikl_Window_GetPath(lWindow)
  print (lPath)
  lIndex = lIndex + 1
end

noatikl_Window_SaveToPath (window, path)

Save the Noatikl piece window returned by an earlier call to noaikl_Window_Open, to the specified path.

The function has the following arguments:

window   the window handle of the piece to be saved.
path   the path where the piece should be saved.

Example:

  -- Try to save the piece with a different name... immediately close it!
  noatikl_Window_SaveToPath("/myfolder/myfilenew.noatikl")
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noatikl_Window_FindFilePaths (subfolder [, subfolder2]

Find all Noatikl pieces relative to the Noatikl document root. Return as an array of file paths.

The function has the following arguments:

subfolder   the subfolder under which to search.
subfolder2   option subfolder to search under the subfolder.

Example:

local lFileList = noatikl_FindFilePaths("templates", "timdidymus1")

local index = 0
while true do

  index = index + 1
  local lFilePath = lFileList[index];
  if (lFilePath == nil)
  then
    break
  end
  
  print ("File path", lFilePath)
end

noatikl_Window_Object_GetCount (window, object)

Returns the number of objects of the specified type, in the specified Noatikl piece.

The function has the following arguments:

window   the window handle of the piece to be saved.
object   the object of interest.

Example:

local lCount = noatikl_Window_Object_GetCount(lWindow, 'Voice')
print ('Voice objects=', lCount)

noatikl_Window_Object_GetName (window, object_type, object_index)

Returns the name of the specified object.

The function has the following arguments:

window   the window handle of the piece to be saved.
object_type   the type of the object of interest.
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object_index   the index of the object of interest.

Example:

local lCount = noatikl_Window_Object_GetCount(lWindow, 'Voice')
print ('Voice objects=', lCount)
local lIndex
while (lIndex <= lCount)
do
  print (noatikl_Window_Object_GetName(lWindow, 'Voice', lIndex)
  lIndex = lIndex + 1
end

noatikl_Window_Object_SetName (window, object_type, object_index, newname)

Sets the name of the specified object.

The function has the following arguments:

window   the window handle of the piece to be saved.
object_type   the type of the object of interest.
object_index   the index of the object of interest.
newname   the new name to use for the object; this must be unique, and must be a valid name.

Example:

local lCount = noatikl_Window_Object_GetCount(lWindow, 'Voice')
print ('Voice objects=', lCount)
local lIndex
while (lIndex <= lCount)
do
  -- Make-up a new name, based on the index number!
  lNewName = lIndex
  noatikl_Window_Object_SetName(lWindow, 'Voice', lIndex, lNewName)
  lIndex = lIndex + 1
end

noatikl_Window_Object_Parameter_Get (window, object_type, object_index, parameter_name)

Returns the value of the parameter, for the specified object index of the specified object type, in the specified
Noatikl piece.

The function has the following arguments:

window   the window handle of the file to be saved.
object_type   the type object of interest.
object_index   the index of the object of interest.
parameter_name   the parameter of interest.

Example:
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local lVal = noatikl_Window_Object_Parameter_Get(lWindow, "File", 1, "Author")
print ('Author=', lVal)

noatikl_Window_Object_Parameter_Set (window, object_type, object_index, parameter_name, 
newvalue)

Sets the parameter to the the supplied value, for the specified object index of the specified object type, in the
specified Noatikl piece.

The function has the following arguments:

window   the window handle of the file to be saved.
object_type   the type object of interest.
object_index   the index of the object of interest.
parameter_name   the parameter of interest.
newvalue   the new value to use.

Example:

noatikl_Window_Object_Parameter_Set(lWindow, "File", 1, "Author", "John Smith")

noatikl_Window_GetRuleElement (window, object_type, object_name, element_index)

This function returns the rule element value of the specified index, for the named object. The value returned is a
value between 0 and 127.

The function has the following arguments:

window   the window handle of the piece
object_type   the object type (e.g. Scale Rule).
object_name   the name of the object (e.g. Major).
element_index   the index of the element; starting at zero for the initial element.

Example:
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local lWindow = noatikl_Window_New()

local lCount = noatikl_Window_Object_GetCount(lWindow, 'Scale Rule')
print ('Scale Rule objects=', lCount)

local lIndex = 1
while (lIndex <= lCount)
do
  -- Dump out the scale rule element values, for the scale!
  local lName = noatikl_Window_Object_GetName(lWindow, 'Scale Rule', lIndex)
  print ('Scale', lName)
  
  local lItemIndex = 0
  while (lItemIndex < 12)
  do
    local lValue = noatikl_Window_GetRuleElement (lWindow, "Scale Rule", lName, lItemInd
ex)
    print ("lItemIndex", lItemIndex, "lValue", lValue)
    lItemIndex = lItemIndex + 1
  end

  lIndex = lIndex + 1
end

noatikl_Window_SetRuleElement (window, object_type, object_name, element_index, newvalue
)

This function set the rule element value of the specified index, for the named object, to the specified value. The
value must be between 0 and 127.

The function has the following arguments:

window   the window handle of the file
object_type   the object type (e.g. Scale Rule).
object_name   the name of the object (e.g. Major).
element_index   the index of the element; starting at zero for the initial element.
newvalue   the new element value to use, in a range from 0 to 127.

Example:
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local lWindow = noatikl_Window_New()

local lCount = noatikl_Window_Object_GetCount(lWindow, 'Scale Rule')
print ('Scale Rule objects=', lCount)

local lIndex = 1
while (lIndex <= lCount)
do
  -- Set the scale rule element values, for the scale, to stupid values!
  local lName = noatikl_Window_Object_GetName(lWindow, 'Scale Rule', lIndex)
  print ('Scale', lName)
  
  local lItemIndex = 0
  while (lItemIndex < 12)
  do
    local lValue = (lItemIndex * 127) / 12
    noatikl_Window_SetRuleElement (lWindow, "Scale Rule", lName, lItemIndex, lValue)
    lItemIndex = lItemIndex + 1
  end

  lIndex = lIndex + 1
end

noatikl_Window_GetEnvelopePercent (window, object_type, object_name, par_name, percent)

This function returns the percent value for the specified envelope at the given percent position. The value returned
is a value between 0 and 127.

The function has the following arguments:

window   the window handle of the piece
object_type   the object type (e.g. Scale Rule).
object_name   the name of the object (e.g. Major).
par_name   the name of the envelope parameter (e.g. Volume).
percent   the percent value; from 0 to 100.

Example:
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local lWindow = noatikl_Window_New()

local lCount = noatikl_Window_Object_GetCount(lWindow, 'Voice')
print ('Voice objects=', lCount)

local lIndex = 1
while (lIndex <= lCount)
do
  -- Dump out the voice volumes envelopes!
  local lName = noatikl_Window_Object_GetName(lWindow, 'Voice', lIndex)
  print ('Voice', lName)
  
  local lPercent = 0
  while (lPercent <= 100)
  do
    local lValue = noatikl_Window_GetEnvelopePercent (lWindow, "Voice", lName, "Volume",
 lPercent)
    print ("Volume percent", lPercent, "value", lValue)
    lPercent = lPercent + 1
  end

  lIndex = lIndex + 1
end

noatikl_Window_SetEnvelopePercent (window, object_type, object_name, par_name, percent, 
newvalue)

This function sets the envelope value at the specified percent, for the named object, to the specified value. The
value must be between 0 and 127.

The function has the following arguments:

window   the window handle of the piece
object_type   the object type (e.g. Scale Rule).
object_name   the name of the object (e.g. Major).
par_name   the name of the envelope parameter (e.g. Volume).
percent   the percent value; from 0 to 100.
newvalue   the new element value to use, in a range from 0 to 127.

Example:
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local lWindow = noatikl_Window_New()

local lCount = noatikl_Window_Object_GetCount(lWindow, 'Voice')
print ('Voice objects=', lCount)

local lIndex = 1
while (lIndex <= lCount)
do
  -- Ramp-up every voice volume envelope!
  local lName = noatikl_Window_Object_GetName(lWindow, 'Voice', lIndex)
  print ('Voice', lName)
  
  local lPercent = 0
  while (lPercent <= 100)
  do
    local lValue = (lPercent * 127) / 100
    noatikl_Window_SetEnvelopePercent (lWindow, "Voice", lName, "Volume", lPercent, lVal
ue)
    lPercent = lPercent + 1
  end

  lIndex = lIndex + 1
end
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